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Summary of Concepts 
 
Possibilities of spatial dimensions other than three 
Cosmological Constant 
Wave Equation for curved space 
Equivalence 
Non-zero cosmological constant implies empty space is curved 
 
If there is no energy density in space, then the space is flat. Place a 
particle in space, and at that point space becomes curved in the 
shape of a cone. What if our space comprised other than three 
spatial dimensions? With one spatial dimension, a mass as small as 
the Planck mass would generate enough curvature to close up the 
space (a cone with zero apex angle and infinite time extent). As the 
number of dimensions increases, so does the inverse law. If the 
spatial dimensions were four, then an inverse cube law would 
obtain and atoms would not be stable. 
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The covariant derivatives of the Metric tensor are always zero. 
 
 G
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Cosmological constant. The Cosmological constant adds an 
attraction or repulsion depending on its sign. It was assumed to be 
zero by Einstein. If the constant is small, then its repulsive force 
will be negligible until very far away from the observer. 
 
Let us review the equivalence of General Relativity with the 
Newtonian theory. 
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Einstein assumed that !  is the energy density and  !
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Newtonian gravitation potential. Special Relativity applies in a 
small patch of space far from any energy density. These equations 
are taken to tensors in order to transition from Special relativity to 
General relativity. 
 
A particle in an acceleration field (gravitational field) moves along 
geodesic curves. How about energy density without mass, i.e. 
motion of a wave in space?  Consider the simple wave equation as 
follows. 
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The solution to this equation is a wave (or super position of waves) 
moving to the left or right with a velocity of v. Now consider the 
equation in three dimensions with v = 1. 
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   !00 = time, !11 ,!22 ,!33 = space  

 



But this is not a tensor equation because the derivatives are not 
covariant derivatives. The proper tensor wave equation for curved 
space is as follows.  
 

  
!µ g µ" # $%

$x" = $
$xµ g µ" # $%

$x" + &µ
µ
' g'( # $%

$x( = 0  

 
In this equation !  is a kind of gravitational force that bends the 
wave, such that two beams of light passing each other would be 
deflected towards each other but deflection is very small because 
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If  
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Start with Special relativity. 
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But we need !  to have two indices, say  Tµ!
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what value of C satisfies the continuity equation? 
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This implies that C = -1/2. 
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The energy density is given by 
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Where the first term in the parenthesis (time) is the potential 
energy of the wave and the other three terms (space) are the kinetic 
energy of the wave. However, there is an ambiguity as we can 
multiply this by a constant (say k). Now take this to general 
relativity. Energy pressure and stress are part of the gravitational 
field. 
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Therefore, energy and momentum determine how to bend space, 
while the bent space determines how the wave will propagate. Put 
in the cosmological constant ! . 
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What is Newtonian analogy? 
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What if  !

2" = #  (uniform mass density)? 
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Differentiate to get force. 
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Everything is pushed away from observer Or, if we put !  on the 
other side of the equation, then it is vacuum energy. So, either a 
uniform mass is pushing everything outward or a vacuum energy is 
doing it. But !  is very small, so such repulsion is detectable only 
for very large distances away from observer. Einstein chose a 
value for !  such that expansion matched attraction – but this was a 
mistake because such a balance is not stable. 
 
Gravitational waves generate shear (non-zero off axis) terms in T. 
Eigen values of T have a significant meaning. 
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At infinity (and with no matter) the curvature of space is not zero. 
Therefore, with non-zero cosmological constant space is uniformly 
curved. Note that flat space and flat space-time are different. 
 
End Lecture # 10 


