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CHAPTER XX
THE DIRAC EQUATION

I. GENERAL INTRODUCTION

1. Relativistic Quantum Mechanics 1)

All of the applications made up to the present have been based
on the Schrodinger equation. This equation, deduced by the corre-
spondence principle from the Hamiltonian formalism of non-relativistic
Classical Mechanics, has all the invariance properties of the Hamil-
tonian from which it derives. In particular, if the system is isolated,
it 1s invariant under spatial rotations and translations. It can also
be shown that it is invariant under Galilean transformations (cf.
Problem XV.7). Therefore, the physical properties predicted by the
Schrodinger theory are invariant in a Galilean change of referential,
but they do not have the invariance under a Lorentz change of
referential required by the principle of relativity. Since the Galilean
transformation approximates to the Lorentz transformation only in
the limit of small velocities, one expects — and experiment verifies —
that this theory will correctly describe phenomena only when the
velocities of the particles involved are negligible beside the velocity
of light: v << ¢. In particular, all phenomena concerning the interaction
between light and matter, such as emission, absorption or scattering
of photons, is outside the framework of non-relativistic Quantum
Mechanics.

One of the main difficulties in elaborating relativistic Quantum
Mechanics comes from the fact that the law of conservation of the
number of particles ceases in general to be true. Due to the equivalence
of mass and energy, one of the most important consequences of relativ-
ity, there can be creation or absorption of particles whenever the
interactions give rise to energy transfers equal or superior to the rest
masses of these particles. To be a complete theory, Relativistic
Quantum Mechanics must encompass in a single scheme dynamical

1)  Knowledge of Sections I and II of Appendix D is recommended for
reading this chapter.
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876 THE DIRAC EQUATION [cH. XX, § 2

states differing not only by the quantum state, but also by the number
and the nature of the elementary particles of which they are composed.
For this, we must turn to the concept of the quantized field, whence
the name of Quantum Field Theory currently given to Relativistic
Quantum Mechanics. This theory, in its present form, is exempt
neither of difficulties nor even of contradictions, but it accounts for
a very large body of experimental facts.

The fifth and last part of this book is designed to serve as an intro-
duction to Quantum Field Theory and at the same time to furnish
elementary methods for calculating certain relativistic effects con-
cerning the dynamics of the electron and the interaction between the
electromagnetic field and charged particles.

It is made up of two chapters.

The present chapter, the first of the two, is devoted to one of the
simplest problems in Relativistic Quantum Mechanics, the problem
of a particle of spin } in a given force field. One of the most important
examples is the electron in an electromagnetic field. The field is not
quantized and one tries to describe the evolution of the system with
a wave equation having the invariance properties required by the
principle of relativity. This equation must also satisfy the corre-
spondence principle and give the Pauli theory in the non-relativistic
approximation. Such an equation exists: it is called the Dirac equation.
After reviewing the Lorentz Group and Classical Relativistic Dynamics
(Section I) we establish the Dirac equation (Section II), and make
a detailed study of its invariance properties (Section III). In the
remainder of this chapter we discuss the physical significance of the
theory, and, in the course of reviewing its principal applications,
examine how it is situated with respect to Classical Dynamics (Section
1V), non-relativistic Quantum Mechanics (Section V) and Quantum
Field Theory (Section VI).

The second chapter is devoted to the concept of the quantized field,
and to the elementary Quantum theory of electromagnetic radiation
and its interaction with atomic and nuclear systems.

2. Notation, Various Conventions and Definitions

Unirs. Except for a few obvious exceptions, all expressions appear-
ing in what follows are written with

fi =c=1.
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With this particular choice of units, time appears to have the dimen-
sion of a length; energies, momenta and masses the dimension of
an inverse length; electric charges appear as dimensionless quantities
(¢2 = e?/fic ~ 1/137). The general expressions may be re-established
by simple considerations of homogeneity.

CoorDINATES. Specification of an instant ¢ and a point r = (, v, 2)
of ordinary space defines a point of space-time. We denote the coor-
dinates of this point by a9, 21, 2, 23; 29 = ¢t is the time coordinate;
al, 2%, 23 the three spatial coordinates: z! = z, 22 = y, a3 = 2. More
generally, we use the indices 0, 1, 2, 3 to denote the components of
four-vectors or tensors along the axes t,z, y, z respectively. Greek
indices denote the space-time components of four-vectors or tensors
and therefore take the four values 0, 1, 2, 3: roman indices are reserved
for the components of ordinary space and therefore take the three
values 1, 2, 3. Thus:

x* = (29, k) = (20, 21, 22, x3)

(1=0,1,2,3) (k=1,2,3).

METRIC TENSOR, COVARIANT AND CONTRAVARIANT INDICES

The space-time metric is a pseudo-euclidian metric defined by the
metric tensor

g,uv =

OO -
SO = O
|
o -~ o o
—_ O O

or again
Joo = 1, O = — 1, Gy = 0 if UFV. (XX].)

We distinguish between covariant vectors (that transform like
0/0x*) and contravariant vectors (that transform like x*), and more
generally between covariant tensor components and contravariant
tensor components. Following the usual convention, covariant indices
are placed as subscripts, contravariant indices as superscripts. Thus
a* denotes a contravariant vector. The corresponding covariant vector
@, 1s obtained by application of the metric tensor:

a, = zgyv a’,
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which gives
ap = ad, ap = —ak.

We shall always follow the convention of summaing over repeated
indices. With this convention the preceding relation becomes simply

= G a’.
Similarly, indices are raised by applying the tensor g¢*:
a* = g”a,.
In the present case, we also have

g" = G-
In addition:

i = §ud® = 9% =9,

where 0, is the Kronecker symbol:

¥ — 1 if u="uv
0 if BEY,

THREE-VECTORS, FOUR-VECTORS, SCALAR PRODUCT

For three-vectors, or vectors of ordinary space, we retain the usual
notation; each of them is denoted by a bold-face letter and its length
by the corresponding character in ordinary print.

The three space components of a contravariant.four-vector a* form
a three-vector. With the above notations, we therefore have

When no confusion is possible with the length of the three-vector a,
we shall sometimes omit the index and denote the four-vector a*
simply by a.

The scalar product of two four-vectors a* and b* is obtained by
contracting the contravariant components of the one with the co-
variant components of the other, i.e. it is given by either a b*, or
arb,,:

a,b* = a"b, = a’b®—a-b (XX.2)

The norm of a* is a,a"= (a®)®—a?.
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CLASSIFICATIONS OF THE FOUR-VECTORS

The four-vectors may be put into three classes, according to the
sign of their norm

a0 < 0 a* =space-like vector
aa* = 0 a*=null vector
a,at > 0 a* =time-like vector

This classification corresponds to the position of the vector with
respect to the light cone z,2*=0. The two latter cases can be further
classified according to the sign of the time component:

a®>0 the vector points towards the future;
a%< 0 the vector points towards the past.

GRADIENT, DIFFERENTIAL OPERATORS

We retain the notation |/ = (0/0x, 0/0y, 0/0z) and A =V V.
The four partial-differentiation operators 0/0x* form a covariant
vector, called the gradient operator, which we denote by the symbol 9 ,,:

9, = 0/0x* = (0/0x’, d/0x!, O/0x2, 0/0x3) (XX.3)
= (0/oct, V).
We shall also make use of the “‘contravariant gradient’:
o* = g**0, = (0/dct,—F). (XX.4)
The Dalembertian [] is defined 1) by (cf. § 11.12):
_ é ;’_:2 ~ A =30 (XX.5)

THE &**¢ TENSOR

¢’ denotes the completely antisymmetrical tensor with four
indices, the components of which are equal to 0 if two of the indices
are equal, to +1 if (luvp) is an even permutation of (0, 1, 2, 3), and
to —1 if (Auwp) is an odd permutation of (0, 1, 2, 3).

ELECTROMAGNETIC FIELD

The electromagnetic potential is made up of a vector term A(r, f)
and a scalar potential ¢(r,¢) which form a four-vector A*:

A" = (@, A). (XX.6)

1) Many authors use the symbol [] to denote the negative of the operator
defined here.
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The electric field & and the magnetic field # are given by
&= —Vp—04/02°, H = curl A. (XX.7)

The components of & and 5 form an antisymmetrical space-time

tensor, F,,, according to the definition
04, 04,
F,uv —_ bx” - bx” (XX.S)
giving R
/J/ O é{)x 52/ O@z
— 6y 0 —H, Hy
F, = | (XX.9)
— Gy H, 0 —H
—n fcz _%y %Qj O /

We shall also use the four-vector operator D, defined by

0x0

"D, =R, +ied, = <i +ieq, V — ieA> : (XX.10)

3. The Lorentz Group

A Lorentz change of referential is a real, linear transformation of
the coordinates conserving the morm of the intervals between the
different points of space-time. In such a transformation, the new
coordinates z'* of a space-time point are obtained_\ from the old ones
x* by the relation |

X't = OQF "+ at.

The real vector a* represents a simple translation of the space-time
axes. In what follows, we shall treat the translations separately and
give the name of Lorentz transformation to the homogeneous trans-
formations (a#=0)1):

P =8 &, (XX.11)

By raising or lowering the indices, we can obtain the matrices
Qr, Qv  Q, from the matrix Q¢ (for example: Q" =g"=Q").
Specification of any one of these matrices defines the Lorentz trans-

1)  The group formed by all of the Lorentz transformations including the
translations is commonly called the inkomogeneous Lorentz group, or Poincaré

group.
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formation. question. The condition of reality and of invariance of
the norm are written

Q. =2, (XX.12)
.Q#,QM = .Q,#Q"‘ =,%. (XX.13)
It follows that
det |Q»| = + 1 (XX.14)
and the inverse transformation is written
¥ = g F, (XX.15)

These transformations form a group, the complete Lorentz group.
It is the group of real linear transformations conserving scalar products
between four-vectors.

If 200~ 0, the transformation conserves the sense of time-like
vectors, that is, it conserves the sign of the time component of these
vectors; it is then called orthochronous, and the set of these particular
Lorentz transformations is called the orthochronous Lorentz group.

If wn addition det lQ"vlz -+1, the transformation also conserves
the sense of Cartesian systems in ordinary space, it is then called
a proper Lorentz transformation. The ensemble of these transforma-
tion forms a group, the proper Lorentz group, which we denote by %.

All transformations of the proper group may be considered as a
succession of infinitesimal transformations. The matrix 2, of an
wnfinitesimal Lorentz transformation is of the form

g,uv + 6()#,,,
where the quantities w,, are infinitesimals. Conditions (XX.12) and
(XX.13) give
Wy = W%, w,,+w,, = 0. (XX.16)
w,, is therefore a real antisymmetrical tensor.
Put
Zl(f::ﬂ) = Zifva) = g,uzx gvﬂ_guﬁgva' (XX17)

Z3P is an antisymmetrical tensor whose only non-vanishing elements
are the two elements y=«,v=p8 and u=p,v=«; one of which is
equal to +1, the other to —1. ¢ being an infinitesimal quantity,

gpw — & ZL”;ﬁ)
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is the matrix of a particular infinitesimal Lorentz transformation,
the “rotation” through an angle ¢ in the x*2? plane.

There exists in all six infinitesimal transformations of this type.
The ‘“‘rotations’ in the planes xl2z2, x2x3 and 32! are spatial rotations
of angle ¢ about the axes Oz, Oz, Oy respectively, the ‘‘rotations”
in the planes a2, 2220, 2320 are special Lorentz transformations of
velocity ¢ in the directions Oz, Oy, Oz respectively 1).

In addition to infinitesimal transformations, one can define different
types of reflection, notably the spatial reflection s (x0=2x0, 2% = — k)
and the time reflection ¢ (20= — a9, ¥ =x*). The orthochronous group
is made up of the transformations %y, of the reflection s and of
their products s.%y. The complete group is formed of the transforma-
tions %y, 8%, tZLo, and st¥,. The properties of these four sheets
of the complete group are summed up in the following table:

Sheet Det | 2+, | £200 group
8 \ 2
Zo + 1 >0 > proper 2 é
- :
=
8
8% — 1 >0 S <= 3
= -
© 2
| :
tZo — 1 <0 o
stLo + 1 < 0

1) If the new referential is obtained from the old one by a rotation through
a finite angle ¢ about Oz, one has:

’

2l = xl cos p+a2sin ¢, x'2 =22cosp—alsing, z'3=ua3 z'0=ual.

If it is obtained by a special Lorentz transformation of velocity » = tanh ¢
directed along Oz, one has

x'l=21cosh ¢ —29sinh ¢, 2'0=20cosh ¢ —alsinh ¢, x'2=a2 2'3=2ad.

The transformations considered above correspond to the case when ¢ = ¢ = in-
finitesimal.
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4. C(lassical Relativistic Dynamics

Let us recall the dynamical properties of a classical particle of
rest mass m and charge e in an electromagnetic field (¢, A).
Let v be the velocity of the particle:

_dr
Vv = a

We define the relativistic mass M and the mechanical momentum 1)
7t by:

(XX.18)

M=__ n=My (XX.19)

V, L~ v2,

(M, ) is a certain four-vector z* of norm m?2:
M2 — 72 = m? (XX.20)

and pointing into the future (M >0).
In the absence of a field, the particle follows a uniform rectilinear
motion: v=Cst.
In the presence of an electromagnetic field, the trajectory followed
by the particle satisfies the equation
dr
5 =e[8+v xXH]=F. (XX.21)
This is the fundamental equation of the relativistic dynamics of a
material point. The vector F is called the Lorentz force.
From (XX.21) we have the equations

ay
d¢

%(r ) =r%F (XX.22)

= (v-F) = e(v- &), (XX.21%)

giving respectively the law of motion of the mass and of the moment
of the mechanical momentum.

These relations can be put in covariant form by introducing the
proper time 7 of the particle, in accordance with the definition

dr = (dz*dz,)}
= J1— o2 dt.

1) Not to be confused with the momentum which in this book means the
Lagrange canonical conjugate of the coordinates (cf. note, p- 54, vol. I).
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One defines the four-velocity
ut = da¥/dr = (dt/dz, vdi/dT) (uu, = 1)
whose product with m gives the mechanical four-momentum
at = mut = (M, n).

Equations (XX.21) and (XX.21') are equivalent to the formally
covariant equation

u
‘% = eFPy (XX.23)
or |
dur
— = Fmy
dz m F

F* is the electromagnetic tensor [eqs. (XX.8-9)].

These laws of motion can be deduced from a Lagrangian or Hamil-
tonian formalism (cf. Problem I.5). The momentum p and the energy
E form a four-vector p#, related to the four-vector ## by the relation

pt = m* 4 eA* (XX.24)
i.e.

E =M+ egp, P = 1+ €A.
The Hamiltonian function is defined by

= ep -+ (p — eA)? 4 m? (XX.25)

in accordance with relations (XX.24) and (XX.20). From (XX.25)
we obtain Hamilton’s canonical equations

dr = dp
=g —a?——egrad((p—v-A).!

The first of these is the definition of velocity. The second is equivalent
to (XX.21) as may easily be verified using the definitions of & and
H [eq. (XX.7)] and the fact that

dA 0
rrie (& +v.grad> A.
II. THE DIRAC AND KLEIN-GORDON EQUATIONS
5. The Klein-Gordon Equation

Since the problem of finding a relativistic wave equation for the
electron is complicated by the existence of spin, we/first look for a
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relativi quation for a particle of spin 0, a = meson for
example. - such a particle has no internal degrees of freedom, its
wave function ¥ depends only on the variables r and ¢. Let m be
its mass and e its charge, and suppose that it is moving in the electro-
magnetic potential 4* = (¢, A).

To find the wave equation we proceed empirically using the corre-
spondence principle; this will guarantee that we obtain the classical
laws of motion when the classical approximation is valid.

We recall that the Schrodinger correspondence rule is given by

E— i% . p— —il. (XX.26)

Putting p* = (&, p), this rule can be written more simply:
Pt — 10, (XX.26)

From expression (XX.25) for the Hamiltonian we obtain

E =ep-+V(p—eA?2+ m? (XX.27)

from which we obtain, by rule (XX.26), the wave equation

.0 >¥,_[1 a) 2]%?
15; — €9 = TV—e + m .

This equation has two serious drawbacks. First, the dissymmetry
between the space and time coordinates is such that relativistic in-
variance and its consequences are not clearly exhibited. Second, the
operator on the right-hand side is a square root, which is practically
untractable except when the field A vanishes.

One avoids these two difficulties by taking relation (XX.20) as
the starting point of the correspondence operation, giving

(B —ep)2 — (p—eA)2 = m2. (XX.28)

This relation is not equivalent to (XX.27), but to the more general
relation

E=ep + V(p — eA)2 4 m2. (XX.29)

Only the + sign corresponds to real classical solutions; the — sign
represents solutions of negative mass without any physical significance.
Thus by taking (XX.28) as a starting point we introduce parasitic
solutions of negative mass.
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The correspondence operation applied to (XX.28) gives the Klein—
Gordon equation :

2
[(i-;—t - e(p> - G v — eA>2:| V= mP¥ (XX.30)

which can also be written in the form
(D, D*4+m2) ¥ = [(0, + ied,) (0* +ied*) +m2] ¥ =0, (XX.30')

where its relativistic invariance is evident.

Let us briefly consider the interpretation of this equation!). To
simplify the discussion we limit ourselves to the case when the field
vanishes. We then have simply (cf. § 11.12):

(O +m?) ¥ = 0. (XX.31)

This is a second-order differential equation with respect to the time,
and we must therefore know both ¥ and 0¥/dt at the initial time
for ¥ to be completely determined at any later time. This difficulty
is easily surmounted if we postulate that the dynamical state of the
system at a given time is represented not by the single function ¥
but by the set of two functions ¥ and 0¥/ot or by the two linear
combinations:

i 0% i 0¥

e=¥+o35 =¥ uar
This is equivalent to postulating that the state of the system is repre-
sented by a wave function with two components, @ and y. This
wave function must obey a differential equation of the first order
with respect to time which is easily deduced from the Klein—Gordon
equation. In the non-relativistic limit, the energy of the particle is
nearly equal to its rest mass m, so that

1 %g ~ mY¥

and therefore, y << @. One of the two components becoming negligible
beside the other, we obtain the non-relativistic Schrodinger theory
in which the dynamical state of a particle of spin 0 is represented by
a one-component wave function.

1) For a more complete account, see H. Feshbach a}’d F. Villars, Rev.
Mod. Phys. 30 (1958) 24, where a list of the main references will also be found.
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In order to interpret the wave function, we must define a position
probability density P and a current probability density j satisfying
the equation of continuity (cf. § IV.4):

z—lt)+v-j=o (XX.32)

or with the notation j* = (P, j)
oy =0, (XX.33)
Since ¥ and ¥* both satisfy equation (XX.31),
P (OP) — (O P =0
which gives, using the definition of the Dalembertian,
o, [P*("¥)— (0r¥*)¥W]=0.

The equation of continuity is satisfied if we take j# proportional to
the bracket on the left-hand side. The proportionality constant is
fixed so as to recover the usual definition in the non-relativistic limit:

2 ; £ 7 . *
= 5 [P*(0MW) — (W) Y],
i.e.
: 1 *
P(r,t) = 2—1- [‘P*bf = b;p 'Jf:l
m . é (XX.34)
, 1 ¥
j(r t) = S [P*(V¥) - (PF*)W].

Examining (XX.34) we see that the density P(r,t) is not positive-
definite. Here we have one of the major difficulties with the Klein—
Gordon equation.

Another difficulty, related to the preceding one, is due to the pos-
sibility of “‘negative energy solutions”. If, for example, we look for ~
the plane wave solutions of the equation in the absence of a field,

YV=exp|[—i(Ht—p-r)]
we obtain, substituting this expression in (XX.31), the condition:
E= + Vp2+m2,

There therefore exist solutions of negative energy —)/p2+m?2. Their
presence is obviously due to the above-mentioned introduction of
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negative masses into the theory (it would be more correct to call
them negative mass solutions; however when the field is null, the
distinction between mass and energy is illusory).

Following Pauli and Weisskopf ), we deal with these difficulties
by modifying the interpretation of the four-vector j# and the definition
of average values. According to this reinterpretation of the theory,
ej* denotes the current-density four-vector; in particular eP(r,t) is
the electric charge density. Equation (XX.33) is therefore an equation
for the conservation of the charge. On the other hand, the number
of particles is not conserved; this is explained by the possibility of
annihilation and creation of pairs of particles of opposite charge,
phenomena that only Field Theory accounts for in a satisfactory
manner. When formulated in this way, the theory is therefore a one-
charge theory and not a one-particle theory. In the Dirac theory, on the
contrary, one is able to define a positive-definite density P, however,
we shall see that the difficulty with negative energies remains, and
that the Dirac theory cannot be considered in an entirely satisfying
fashion as being a one-particle theory either (Section VI).

6. The Dirac Equation

Let us now attempt to form a relativistic wave equation for the
electron. Following Dirac, we proceed by analogy with non-relativistic
Quantum Mechanics.

Just as the electron of the non-relativistic theory is represented
by a two-component spinor which transforms under rotation like an
angular momentum of value }, the electron of the relativistic theory
must be represented by a wave function of several components having
a certain well-defined variance with respect to the larger group of
Lorentz transformations. We denote the s component of the wave
¥ by ys(r,t). ¥ may be written in the form of a column matrix:

Y1

p—| "2

YN
As in the non-relativistic case, one may equally well regard the
wave ¥ at a given time as a function of the orbital variables r and

1) W. Pauli and V. Weisskopf, Helv. Phys. Acta 7 (1934) 709. See also
H. Feshback and F. Villars loc. cit. note p. 886.\

)
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the intrinsic, or spin, variables s (s=1, 2, ..., N). Such a wave rep-
resents a certain state vector |y(t)>; and the space of these states,
&, is the tensor product

&= EO0 @ E®

of the orbital-variable space &©® by the spin-variable space &®); the
wave ¥ represents this vector in a suitable representation:

P(r, s; t) = ys(r, t) = {rs|P(2)).

Continuing with the analogy, we define the position probability density
by the formula

Pty =S |yl (XX.35)

With these hypotheses, the wave equation is necessarily of the form

i%']t[—j = Hp'V, (XX.36)
where Hp is a Hermitean operator of state-vector space. To see this,
we note, on the one hand that since ¥ completely defines the dynamical
state of the electron at each instant the wave equation must be of
the first order with respect to time; on the other that Hp must be
Hermitean in order to guarantee the self-consistency of our definition
of P(r,t) (cf. § 1V.3).

Since we are seeking a relativistic wave equation, we also require
that it exhibit a certain formal symmetry between the spatial coor-
dinates and the time namely that it also be of first order with respect
to the spatial variables.

Let us first consider the case of an electron in the absence of field.
The Hamiltonian must then be invariant under translation, thus
independent of r. Taking into account all the preceding hypotheses,
it can therefore be written in the form

Hp=a-p-+pm, (XX.37)

where the operator p has the significance indicated by the correspond-
ence rule (XX.26), i.e. p = —iF, and where a = (xz, ay, «;) and p
denote 4 Hermitean operators acting on the spin variables alone.
If we adopt the notation E = i0/0t the wave equation reads

[ —a-p—pm]¥ = 0. (XX.38)
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To determine a and f, we invoke the correspondence principle: we
require the solutions of this equation to satisfy the Klein—-Gordon
equation, i.e. we require that

[E2—p%—m2]¥ = 0. (XX.39)

Multiplying on the left by the operator [E+a-p+pm], eq. (XX.38)
gives the second-order equation

(B2 — 3 (ak)2 (pF)2 — p2m2 — 3 (ak ol + ol ok) pk pt
* o _ S (wk B fok) mpk] W = 0.
k

This equation and eq. (XX.39) are identical if the 4 operators S,
a anticommute and if their squares are equal to 1:

(x*)2 =1 okl + alok = 0 (k#1)
p2=1 okf + B ok =0

Equation (XX.38), in which the matrices f, a are chosen to be
Hermitean and to satisfy relation (XX.40), is called the Dirac equation.

(X X.40)

From this equation for the free electron, we pass to the Dirac
equation for an electron in the electromagnetic field (¢, A) by making
the substitution

E —> E—eqp, p—p—cA (XX.41)

[e is the charge of the electron (e<0)]. One obtains:

. [(—ep)—oa-(p—eA)—pm]¥ = 0 (XX.42)
i.e.

l:(i%—eq))—a-(—iV—eA)—[)’m:lSP=O. (XX.43)

Comparing this with equation (XX.36) we find the following ex-
pression for the Dirac Hamiltonian in the presence of an external
field:

Hp = ep + o (p—eA) + pm. (XX.44)

7. Construction of the Space &¢). Dirac Representation

It remains to construct &©). The operators of this space are the
4 basic operators f, az, oy, x; and all of the functions that can be
formed with them. &® must be irreducible with respect to this set
of operators.
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To construct &® we shall make use of the Hermitean character
of the four basic operators and of relations (XX.40) defining their
algebraic properties.

These properties are analogous to those of the three operators
o1, 02, o3 of the non-relativistic spin 1 theory. In this case, the spin-
variable space &' has two dimensions. It can be constructed in the
following way. Since o3 is Hermitean and o¢32=1 its only possible
eigenvalues are -+ 1. Moreover, to each eigenvector of o3 one can
associate another eigenvector corresponding to the opposite eigen-
value. Consider for example, a vector |+ ) such that: o3 |+)=|+).
Since o3 and o) anticommute, the vector |—) = o1 |+) has the
property o3|—)>=(—1)|—)>. One has o1|+)>=|F) and o3|+)=
(+1) [£). The space spanned by the vectors |+ ) and |—) is there-
fore invariant with respect to the operators o3 and ¢; and with respect
to functions of these operators (notably o3 = ig103). From the very
fashion in which it was constructed, it is irreducible. It is therefore
the sought-for space &“. In the representation with basis vectors
| 4> and | — > the operators o1, o2 and o3 are represented by the Pauli
matrices [cf. § XIII.19 or formula (VIIL.65)].

To construct &) we reduce the problem to the preceding one.
We introduce the operators oz, oy, 0, and g1, g2, o3 defined by:

Oz = — iCYx Ky, Oz = —‘i(Xy Kz, Oy = — iO&z XKy (XX.4:5)
03 =P, 01=0:0;= —ixgayng, @2=10103= —fazayn;; (XX.46)

the four basic operators are expressed in terms of the p and the o
by the formulas

B=e03  ofF=pi0t. (XX.47)

The construction of & therefore consists in the construction of
a space irreducible with respect to the ¢ and the ¢. Now it is easy
to see that:

(¢) each p commutes with each o;

(12) the o are three anticommuting Hermitean operators whose
square is unity;

(112) the p are three anticommuting Hermitean operators whose
square is unity.
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Consequently (cf. § VIIL.7):

() &6 is the tensor product
EG) = @ @ @

of a space £®@ irreducible with respect to the p and a space &©
irreducible with respect to the o;

(1t) &@ is a 2-dimensional space that can be constructed following
the method indicated above;

(117) &©@ is also a 2-dimensional space that can be constructed
by the same method.

The space & therefore has 4 dimensions.

In the following sections we show that the ¢ are related to the
spin, and the ¢ to the sign of the energy, the Dirac equation having,
like the Klein-Gordon — and for the same reasons — negative energy
solutions. In particular we shall see that a is a (polar) vector operator
and that e = (0, 0y, ;) 1s an (axial) vector operator; in addition
one formally has

o < o = 2io. | (XX.48)

The spin of the electron is §o. The sign of the energy is roughly
given by the eigenvalue of g = ps.

The dynamical state of the electron is therefore represented by a
function ¥ having 4 components, i.e. twice as many components as
the wave of the non-relativistic spin { theory. The representation
in which the ¢ and the o are the Pauli matrices [cf. eq. (VII.65-66)]
is called the Dirac representation; in this representation, each com-
ponent corresponds to a given orientation of the spin along the axis
Oz, and roughly to a given sign of the energy.

8. Covariant Form of the Dirac Equation

Equation (XX.43) is the Dirac equation as originally proposed by
Dirac himself. It is in this form that it lends itself most easily to
physical interpretation and to the study of the passage to the non-
relativistic limit. We now propose to obtain a second form, more
symmetrical with respect to the space and time coordinates and
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therefore more convenient whenever questions of relativistic co-
variance play a preponderant role.
To this effect, we multiply both sides of (XX.43) on the left by
p and put:
yr= 0% rh v 0 = (00 )

h g (XX.49)

We obtain

[iy* D, —m] ¥ = [p*(id,—ed,)—m] ¥ = 0 (XX.50)

The properties of y# are easily obtained from those of a and S by
applying definitions (XX.49). The ten relations (XX.40) give the ten
equivalent relations

yrYT Syt oyt = 2¢. (XX.51)

The Hermitean conditions on the a and [ are equivalent to the

conditions
POT =90,  phT= — b (XX.52)

that may be written in the condensed form
T = B ol (XX.53)

It is convenient to extend the usual rule of raising and lowering
of indices to the y, and to put

V=GV’ (XX.54)
Note that:
=yt =L (XX.56)

9. Adjoint Equation. Definition of the Current

We have defined a positive-definite position probability density
[eq. (XX.35)]. As indicated above, the Hermitean character of the
Dirac Hamiltonian guarantees that this definition is self-consistent.
We shall now define a current density and show that the current
defined with the solutions of the Dirac equation obeys an equation
of continuity. We first give a complete discussion of this problem
using the Dirac form, and then repeat the argument with the co-
variant form.
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Suppose that we have chosen a particular representation of the
B and a. The wave ¥ is then a certain column matrix with four lines

Y1

w— | ¥2
Y3

¥4,
Denote its Hermitean conjugate by:
P = (p1*yp2 s ypa®).

The operators of spin space are 4 X 4 matrices. One can define partial
scalar products in which one sums over the spin variables alone. We
shall indicate such scalar products by parentheses; thus the density
P is written

P(r, t) = (P! ¥). (XX.57)

As another illustration, denote by fs the element in line s and column
t of the matrix g (s,t=1, 2, 3, 4):

(P pY) = Z Z ws™ Pst e
s
Now if ¥ is a solution of the Dirac equation, that is, if

i—=Hp¥

ot
. 0
=[6‘P+§“k<“w‘e‘“)+ﬁm:|y”

then ¥' is a solution of the Hermitean conjugate equation, that is
of the equation obtained by taking the complex conjugate of (XX.58)
and replacing each matrix by its transpose:

. OP!

IWZ—T]‘HD

(XX.58)

" (XX.59)
_ t S (11— _ edk ) Ptak — t

epV %(1 S ed )?’ ok —mPtp.
Scalar multiplication of (XX.5§) on the left by %' and (XX.59) on
the right by ¥ and then addition gives

. 0

d
— t — ] R t ak
ig (V1Y) = - i3 5 (PP, (XX.60)
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On the left-hand side we recognize the time derivative of the probabil-
ity density, and on the right-hand side the divergence of a certain

vector j(r,t) defined by
jir, t) = (Y'a¥). (XX.61)

j(r,t) is the sought-for current density and (XX.60) is equivalent to
the equation of continuity

> .

The above may be repeated starting from the covariant form of
the Dirac equation [eq. (XX.50)]. The Hermitean conjugate of

(XX.50) is
(—io,—ed,)Piy*'—m W' = 0. (XX.62)

[Here the symbol 0,7y# represents the line matrix with four columns
(0WT[ox*)y*".] It is convenient to put:

P = Ptyo, Pt = Poo, (XX.63)

Taking relations (XX.53) into account, equation (XX.62) can then
be put after multiplication on the left by y° in the simpler form:

(—id,—ed,)Py*—m¥P =0 (XX.64)

This equation is obviously equivalent to (XX.59). ¥ is called the
adjornt of ¥, and (XX.64) the adjoint equation.

Scalar multiplication of (XX.50) on the left by ¥ and (XX.64)
on the right by ¥ and then subtraction, gives

i, (Py*P) = 0.
One defines the current density four-vector
# = (Py+WP). (XX.65)
The preceding equation is equivalent to the equation of continuity
0,j* = 0.

One easily verifies that j* = (P, j). Thus, as expected, we obtain the
equation of continuity written in its covariant form. In the next
section, we show that the 4 components of j# indeed form a four-
vector.
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III. INVARIANCE PROPERTIES OF
THE DIRAC EQUATION

10. Properties of the Dirac Matrices

As a preliminary to the study of the invariance properties of the
Dirac equation we now make a systematic study of the properties
of four 4 X4 matrices y* = (y°, y1, 2, »3) satisfying the relations
Lyl Yj'“*z-\/b' Bap L ¥l — gk

Y+ Yt = 291, (XX.66)
where [ is the unit matrix. The matrix relations (XX.66) are analogous
to the operator relations (XX.51); however, the matrices introduced
here do not necessarily verify the unitarity conditions (XX.53). All
of the following properties are consequences of relation (XX.66)
alone.

y4 MATRICES. As the »* anticommute, and as their square is equal
to +1 or —I, any product of several y# is equal, to within a sign,
to one of the 16 particular y4 matrices given in Table 1. These have
been grouped in 5 classes denoted by (S), (V), (T'), (4) and (P) and
containing 1, 4, 6, 4 and 1 elements respectively; the reasons for this
classification will become clear at the end of this section (cf. § 14).

TABLE XX.1

The y4 matrices

7 Explicit form \°
Matrix N —— » oo e -
(ph)i= 1 (p42 = — I

(S) 1 = |
(V) i = {98, 9%} = »° p1 y? e
(T)  plAe] == {php0, p5p0pk} = | plp0 2P0 180 YRR p3yl ply?
(A)  yHo1 = {095, yrys) = YRy YoYRS YOSyt Oy
(P) y[ﬂ-/wQ] == 95 20y1y24/3

It is clear that (y4)? is equal, according to the case, to I or to —1;
the six matrices whose square is equal to I are grouped in the left-
hand column; the ten matrices whose square is equal to — 7 in the
right-hand column.

Of all these matrices, only / commutes Jwith all of the others. If
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yA=£ ], it anticommutes with 8 of these 16 matrices and commutes
with the 8 others.
In particular the matrix o>, defined by 1!)

75 = 90y1y2)3 (XX.67)
anticommutes with the »*:
y5/}r.u + 'y‘“y5 == O (XX.68)
and its square is
(y5)2 = —1. (XX.69)

INVERSE MATRICES (y4). We define the y, matrices by the relation:

V= Gy (XX.70)
Obviously :
‘}”“ == [}}/t]—l'
It follows that the inverse of a 4 is obtained by reversing the order
of the y" involved and replacing each of them by the corresponding
v,; we denote the expression thereby obtained by ya4:
yayd =yidya= L (XX.71)

Following this method of constructing the inverse, one finds
Y5 = Y3Y2Y170.

TRACE AND DETERMINANT
4 if yA=1

Tr y4 —
=0 o prel

(XX.72)

To see this, suppose y4+ [ and let yB be one of the 8 matrices which
anticommute with 4:

yA4 = —yEyiys.
We then have:
Tryd = —TryBydyp = —TrygyByd = —Tryd = 0.
We note in passing (Problem XX.3) that:
det y4 = 1.

REARRANGEMENT LEMMA. The following property may be verified
by simple inspection:

If we multiply each matrix of the set of 16 y4 matrices on the right

1) The index 4 is commonly used to denote the time component, according
to the definition: a%* = i = ict.
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(or on the left) by a particular one of them, we obtain the same set
of 16 matrices, except for possible changes in order and sign.

LINEAR INDEPENDENCE AND IRREDUCIBILITY. Using the rearrange-
ment lemma and the properties of the trace, it can easily be shown
that:

(t) The 16 y4 matrices are linearly independent.

(12) Any 4th order matrix M is a uniquely-defined linear combina-
tion of the y4:

M=Ymyp4 ma=%}Trys M.
4

(122) Any matrix commuting with every 5#, and therefore with
every 4, is a multiple of the unit matrix:

if [M,y*]=0 for any u, M = Cst. x 1.

FUNDAMENTAL THEOREM. Let y* and y'* be two sets of 4 fourth-order
matrices satisfying relation (XX.66). There exists a matriz S, non-
singular (det S+#0) and defined to within a constant, such that

pt = 8y'# §-1 (g =9,1,2, 3). (XX.73)

To demonstrate this theorem we proceed in the following way.
To each set »*, »'# there corresponds a set of 16 matrices y4, y'4
whose definition and principle properties were given above; thus to
each particular y4 there corresponds a certain matrix y'4, the index 4
taking all 16 distinct values. Let F be a certain matrix and denote
by S the matrix defined by

S = Zy'A FyA,
A

the sum » 4 being extended over the 16 possible values of the index A.

Denote a particular matrix by 9B, its inverse by yp and the corre-
sponding matrix in the other system by y'Z; in virtue of the rearrange-
ment lemma,

y'BSyp = D y'By'AFyayp= D y'4Fys =38,
A A
therefore
y'BS = SyB. (XX.74)

For relation (XX.73) to be verified by S, it remains to show that
S has an inverse. To this effect, we introduce the matrix 7', defined by

T = ; yAa;/A’,
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where @ is an arbitrary matrix. Reasoning in an analogous way one

shows that
yBT = Ty'B,
Therefore
yBTS = Ty'BS =T SyB,

whatever y8; since 7S commutes with any matrix y5, it is a multiple
of unity: T'S=cx 1. The multiplication constant is given by the
formula:

c=41TrTS = };BZTI“}/AG)/'AQ/'BF'}/B
=1TrG (3 Xy ay'B Fypy4) = 4TrGS.
1B

Now F can always be chosen so that S has at least one non-zero
element, for clearly the 16 y4 matrices would not be linearly independ-
ent if § vanished for every F. Thus it is always possible to choose &

such that
TrGS = > > Gst Sts = 15
s t

one then has ¢=1 and therefore 7'=_S-1. Thus S does have an inverse
and property (XX.73) is obtained by multiplying both sides of (XX.74)
on the right by S-L

If another matrix, S’, has the same property, S-1S’ commutes with
all of the y* and therefore: S-1S'=Cst x I. Conversely, if S has the
property (XX.73), then so has any multiple of S. Thus we have shown
that the non-singular matrix S exists, and that it is defined to within
a constant. Q.E.D.

UNITARY 9" MATRICES. If the matrices obeying relations (XX.66)

are unitary:
Yu = 7070 =¥, (XX.75)

all of the y4 matrices are unitary and it follows that they are Hermitean
or anti-Hermitean according as (y4)2 is equal to 41 or —I.

The fundamental theorem is completed by the following corollary,
the proof of which is left to the reader:

Let y* and y'* be two systems of 4 fourth-order unitary matrices satis-
fying relations (XX.66). There exists a unitary matriz U, defined to
within_a phase, such that: y™*=Uy*U" (u=0,1, 2, 3).

COMPLEX CONJUGATION, B MATRIX. In particular, if the y* are
unitary and obey relations (XX.66), the 4 complex conjugate matrices
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y** are also unitary and also obey relations (XX.66). The preceding
corollary therefore applies: the y* are obtained from the y** by a
unitary transformation. We shall henceforth denote the matrix of
that transformation by B (B is defined to within a phase):

pHt = Byt* Bt yr* = B* i3, (XX.76)
It can be shown (Problem XX.4) that B is antisymmetrical:
B— B
or, what amounts to the same, that
BE*=B*B- =], (XX.77)
If the y matrices are those of the Dirac representation one has
B = Bp=y25
= —1030y.

Property (XX.77) is easily verified for this particular case.

11. Invariance of the Form of the Dirac Equation in an Orthochronous
Change of Referential

In order to satisfy the relativity principle, the Dirac equation and
the equation of continuity must have the same form in different
Lorentz referentials. In actual fact, the principle requires this in-
variance of form only with respect to proper Lorentz transformations 1),
but it happens that the theory is formally invariant with respect to
the complete group. We shall begin with a detailed study of invariance
with respect to the orthochronous group. Time-reversal invariance
will be examined at the end of this section along with other invariance
properties characteristic of the Dirac equation but not directly related
to Lorentz transformations.

1) And also with respect to space and time translations. This invariance
can easily be demonstrated by an argument analogous to the one given in this
paragraph. If the origin of axes is displaced by a four-vector a”, that is, if
xz'* = a# + a*, then A4,/(x") = A,(x) and the law for the transformation of
wave functions [that is, the analogue of (XX.85)] becomes simply:
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Let us therefore suppose that the dynamical state of the electron
is represented in a referential (R) by a four-component wave function
satisfying the Dirac equation:

[v"(i0, —ed, (x))—m] ¥ (x) = 0. (X X.78)

We suppose that a representation has been chosen once and for
all for the operators of the space & ; the symbols y#* therefore denote
well-defined matrices and relation (XX.78) represents 4 equations
(s=1,2,3,4):

> D (s <i 2 eA“(xOxlx?;ﬂ)) pe(x02 2228) — mys(x0xlxx3) = 0
t=1.2,3.4 p o
satisfied by the 4 components yg(x) of the wave function.

Consider this same system in a new referential (R’) obtained from
the preceding one by a certain orthochronous Lorentz transformation
z

(R') = Z(R).

Z is characterized by a certain matrix Q*, having properties (XX.12)
and (XX.13) (in addition 2%>0) and defining the linear correspond-
ence between the coordinates a# of a given point in the referential
(R) and the coordinates x'* of the same point in the referential (R’)
that is, the law for the transformation of contravariant vectors
[eq. (XX.11) and (XX.15)]. We write symbolically

¥ =Fr, =L (XX.79)

The partial-differentiation operators transform like covariant
vectors:

d, = 0,4,. (XX.80)

If we denote the covariant components of the potential in the new
referential by 4,'(z’), they too are related to the A, (x) by the law
for the transformation of covariant vectors:

A (#) = ALy} = A, )5, (XX.81)

2 H

Considered as a function of the new coordinates, ¥(x) obeys the
equation obtained from (XX.78) by substituting into it from (XX.80)
and (XX.81):

[7#(10, —ed, (x")) —m] ¥ (L-1x') = 0, (XX.82)
where
yH = QL (XX.83)
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The four y* matrices are unitary and satisfy relations (XX.66).
The four # matrices are not necessarily unitary, but, because of the
orthogonality of the 27 [relations (XX.13)], they also verify relations
(XX.66), i.e.

DD = Gl )
= 204 g°°S», = 2g1,

Therefore in virtue of the fundamental theorem of § 10, there exists
a non-singular matrix / defined to within a constant which transforms
the 7 into the y:
yr= 0ty = A 1yr A (XX.84)
(u=0,1,2 3)

Substituting this relationship into (XX.82) and putting

V(') =AY(x) = AV (L 12') (XX.85)
one finds, after multiplying on the left by A:

[0, —ed, ()] ¥'(a) = 0.

This wave equation describes the evolution of the system in the new
referential. It is seen to be formally identical with (XX.78). The
Dirac equation is therefore formally invariant in an orthochronous
change of referential and the law for the transformation of the wave
function is given by equation (XX.85).

The matrix A, which is defined to within a constant, cannot in
general be chosen to be unitary; however it will now be shown that
the constant can always be chosen so as to have

At = 904140 (XX.86)

A is then defined up to an arbitrary phase.

Since the 0, are real and since the y* are unitary and therefore
verify (XX.75), the comparison of (XX.83) and its Hermitean con-
jugate gives

.jjm — yoi,‘uyo.
Taking the Hermitean conjugate of (XX.84) and substituting the
preceding relation one easily obtains

PH= (Y0 ANO)y(y0AMY0) L.

Comparing with (XX.84), we see that the matrix Ay91'0 commutes
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with the four y* and is therefore a multiple of the unit matrix:
At =cydA4-199, (XX.87)

Next we show that the constant ¢ is necessarily real and positive.
From (XX.87) and (XX.84),

AtA = ep¥(A1994) = c(£2%+ D L20y0yk)
Ic

whence, taking into account (XX.72), TrA'A =4c£2%. Now since the
trace of the Hermitean-definite matrix A'A is necessarily real and
positive, and since 9 is also real and positive, then so also is c.
Thus if one multiplies A by }/¢c, the resulting matrix is also a A matrix
and verifies equation (XX.86). Q.E.D.

From the law (XX.85) for the transformation of wave functions,
we obtain the law for the transformation of the adjoint functions:

P — Pty = Pt Aty0 = Wyo/l*yo
whence, taking into account (XX.86)

¥'(x') = P(x)AL. (XX.88)

Using this transformation law, the reader may easily verify that

the adjoint equation (XX.64) is also formally invariant in an ortho-
chronous change of referential.

It remains to show that the equation of continuity is formally
invariant or, better, that j* [definition (XX.65)] transforms like a
contravariant four-vector 1).

This is easily verified; from (XX.85), (XX.88) and (XX.84),

jra) = (Pyd') = (TALprAW) = Qn (TyeW)
= Q* 7¢8(x).

For each Lorentz transformation, A is defined up to a phase by
conditions (XX.84) and (XX.86). In the present case, this phase has
no physical significance. In so far as possible it is desirable to remove
the arbitrary in the phase, while preserving the property of the A
to form a group homomorphic to the orthochronous Lorentz group
(see the discussion of § XV.8).

1) Otherwise, the normalization of the wave function would depend on the
reference system and the interpretation of j° as a position probability density
would not be justified.
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Now since the 0¢, are real, condition (XX.84) gives
“Q“u';’/v* — (/1*)‘1 'y“*/l*,
whence, introducing the unitary matrix B [definition (XX.76)],
20,97 = (BA* By ( BA* BY).
Comparing this equation with (XX.84), we see that BA*BtA-1
commutes with the four " matrices and is therefore a multiple

of the unit matrix; it is easy to see [for example by calculating
det(BA*B'A-1)] that this multiple is a phase factor; in other words

A*=e*B'AB.

since /1 is determined up to a phase factor, one can always choose
this phase so as to have e*=1. In what follows this will always be
done; A is then defined up to a sign.

In conclusion, to each orthochronous Lorentz transformation there
correspond fwo / matrices, differing by a sign, defined by the, three
conditions

Qr = A1yt A (XX.89a)
At = 904-140 (X X.890)
A* = B'AB. (XX.89c¢)

It is clear that the set of A matrices thus defined forms a group and
that this group is homomorphic to the orthochronous Lorentz group.
We shall see in § 12 that the arbitrary in the sign of the A cannot
be removed without violating this group property 1).

1) Rather than condition (XX.89¢), one could just as well take the more
general condition: A* = yB'AB, where 5 is a constant depending on the
particular Lorentz transformation considered. The group property of the A is
preserved if the #» form an Abelian representation of the Lorentz group.
Consequently, one necessarily has = 1 for the transformations of the proper
group %o, which gives back condition (XX.89¢). For transformations of the
reflection type that is for those of the sheet s.%p, one may choose between
the two following possibilities:

(a) = 1 for any s%y; we obtain (XX.89);
() n = — 1 for any s%o, that is, A* = — BAB".

The physical content of the theory is obviously independent of this choice.
The two groups, G@) and G©®), which correspond respectively to (a) and (b)
above, are both homomorphic to the orthochronous Lorentz group, but they
are not isomorphic to each other. In particular, the two matrices which cor-
respond to s have their square equal to I in G@), and to — I in G®) [Cf. note 1,
p.- 908 below].
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12. Transformation of the Proper Group

We shall now find explicit expressions for the /A matrices defined
by equation (XX.89). In this paragraph we limit ourselves to the
transformations of the proper group.

Let us first consider the infinitesimal transformations. To each of
the 6 infinitesimal “rotations” g¢,,—eZf there corresponds a matrix
AP (e) differing by an infinitesimal from the unit matrix and which
may therefore be written in the form

AP (g) ~ I+ieS,3, (XX.90)
where S,; is a finite matrix to be determined. One has
[ACR ()]l = ACP(—¢e) >~ I —1ieS 4.
Property (XX.89a) therefore gives

—eg” Zy y* = —ie[S.p, "],
or, using (XX.17)

7

(S, 7] = 1(8"5 70— 0", 5)-

S,s satisfies the same commutation relations with the y* as the
matrix %iy,ys;. The difference therefore commutes with the four o”
matrices and is thus a constant. One easily sees that conditions
(XX.89bh) and (XX.89c¢) are satisfied if, and only if, this constant
vanishes. It is convenient to put

Ouy = %i[Vw 7] (XX.91)
= i)’y'}/v (M?’L—'V).
One finds therefore:
Saﬁ = %O‘aﬂ (XX.92)

The symbols S,; and ¢, will also be used for the operators represent-
ed by the matrices S,; and o, respectively. We shall see further on
that S,; is an antisymmetrical tensor operator (6 components) re-
presenting the intrinsic angular momentum or spin of the particle.
To be exact, the spin is the spatial part (3 components) of this operator.
S, is related to the operators ¢ and a of § 6 and 7 by the relations

S1o= %ia’x Sop = %my S30 = %irxz (XX.93(1)
8232:120’1- 8312—%0’3/ Slgz %O’z. (XX93b)
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Any finite transformation of the proper Lorentz group may be
considered as the product of successive infinitesimal transformations.
We can therefore construct the /1 matrices corresponding to a finite
change of referential by taking the product of matrices for infinitesimal
transformations as defined above. If we proceed in this way conditions
(XX.89b) and (XX.89c) are automatically fulfilled and we obtain
one of the two possible /1 matrices.

In particular, the “rotation’ of angle ¢ in the plane 2*2f is a product
of infinitesimal rotation matrices in this plane, and the matrix A% (¢)
representing the transformation is therefore

ACB (@) = el75ap (XX.94)

Thus (cf. note, p. 882), if it is a special Lorentz transformation
of velocity v=tanh ¢ directed along the a axis, one finds, taking
into account relations (XX.93a) and the properties of ay:

A%t (@) = e~ = cosh }¢ — &, sinh %(p-. (XX.95)

More generally let Agy(v) be the matrix associated with the special
Lorentz transformation of velocity v; then

Agp(v) = cosh 1¢ — (- u) sinh 1¢,
where :
u=v/v, @ = tanh-lv.
Let us put
b=1/)'1—v% = cosh ¢. (XX.96)

After an elementary calculation, the preceding expression takes the
form:

1

T e —
AT ey

[1+86 — (a-v)b]. (XX.97)

Consider now rotations in the ordinary sense of the word. Expression
(XX.94) gives for rotations about Oz:

AV (@) = elSu? = ell%? = cos }¢ + ig, sin 4¢. (XX.98)

More generally the matrix 4,(¢) associated with a rotation through
an angle ¢ about the axis parallel to the unit vector u is

Ay(p) = cos 1¢p+io, sin 1 (XX.99)
with :
o, = (6-u).
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We are now ready to discuss the spin of the particle described by
the Dirac equation. The spin is defined by the transformation prop-
erties of the internal variables with respect to spatial rotations.
Equation (XX.99) gives the general expression for the transformation
matrices of the internal variables in a rotation. The only difference
between this expression and the one given by equation (X111.84)
is the sign in front of oy ; one passes from one to the other by changing
¢ into —¢; it follows that the two matrices are inverses one of the
other. This difference is due to the fact that in Chapter XIII, we
considered the rotation of the variables and of the states while keeping
the axes fixed: here we have taken the opposite point of view. We
now see that the Dirac wave function transforms under rotation like
the wave function of a particle of spin 3.

Note in particular that a rotation through 2z about any axis does
not give back the unit matrix; indeed one finds that

Au(2nzm) = (— ), (XX.100)

property characteristic of half-integral spins. From this it is clear
that the arbitrary in the sign of the / cannot be removed without
vielating their property of forming a group.

We shall henceforth call the wave functions of the Dirac theory
spinors.

13. Spatial Reflection and the Orthochronous Group

Once the law of transformation of spinors in proper changes of
referential has been determined, we need only to know the law of
transformation in the reflection s to be able to determine the law
of transformation in any orthochronous change of referential.

Denote by As; the matrix corresponding to the reflection s of the
referential. In this case (XX.85) becomes

Y'(t, r) = APt —r). (XX.101)
Condition (XX.89a) gives

As 190 A5 = 40 Ag Lk Ay = — ok,
whence

/13 = Csg }’0.

The constant ¢ is fixed by (XX.89b) and (XX.89¢); one finds

Cs: i 1.
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Therefore :
/ls: == '}/0 (XX102)

As is defined up to a sign in accordance with what was said above 1).

14. Construction of Covariant Quantities

From the components of the spinor ¥(x) and those of its adjoint
Y(x), one can form in all 16 linearly independent functions of
20, 21, 22, 23 that are bilinear in ¥ and ¥. They can be grouped into
5 fields of well-defined tensorial character, namely: a scalar S, a
vector V#, an antisymmetrical tensor with two indices 7", an anti-
symmetrical tensor with three indices, or pseudovector A" and
an antisymmetrical tensor with four indices, or pseudoscalar P.
These are given in Table XX.2.

The indicated tensorial characters can easily be demonstrated using
the law for the transformation of the spinors ¥ and ¥ [eq. (XX.85)
and (XX.88)] and relation (XX.89a) between the matrix /1 and the
coefficients Q#, of the corresponding Lorentz transformation.

Recall that the law for the transformation of a pseudoscalar differs
from that of a scalar only by the presence of the additional factor
det |Q2%,|:

P(z') =det |Q%| P(x).

TABLE XX.2

Tensors bilinear in ¥ and ¥

Number
Tensor of Nature
Components

S(x) - (PY) 1 Scalar

VH(x) (PyH¥) 4 Vector

Til(g) == (FytyPW)  (pF#v) 6 Tensor of rank 2
Al (g) = (TpryPy' W) (A, p £ v, v £ A) 4 Pseudovector
P(z) == (P5YP) | 1 Pseudoscalar

1)  Expression (XX.102) corresponds to choice (a) defined in note, p. 904.
Choice (b) leads to:

/1s = iyo.
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Thus a pseudoscalar field transforms like a scalar field in a proper
Lorentz transformation, but changes sign in a reflection s. Similarly,
the law for the transformation of a pseudovector differs from that
of a vector only by the presence of the additional factor det Q.

The vector V#(x) has already been interpreted as the current-
density four-vector:

Vi(e) = j*().

The other covariants are also capable of interpretation. Thus 7'
is, to within a constant, equal to a tensor §*”, which can be interpreted
as a spin density:

Tl = — 28w (x) = —2i(PS“WP).

15. A Second Formulation of the Invariance of Form: Transformation
of States

In the preceding paragraph, each transformation is considered as
an operation on the reference axes, and the physical system is not
modified. Inversely, one may effect the transformation on the physical
system and leave the axes fixed; this second point of view was
systematically adopted in the third part (cf. in particular the remarks
of § XIII.11). Although the results are expressed in different language,
it is clear that the two points of view are equivalent.

In order to clarify this equivalence, let (S) be the state of the
physical system represented in the referential (R) by the spinor ¥(x).
Let (8’) be the state obtained by effecting the transformation ¥ on

)

(S), and (R) the referential which is taken into (R) by the same trans-
formation (cf, Fig. (XX.1):

(8)=2(S), (B)=L(R).

We consider the following three spinors:

¥ (x) representing (S) in referential (R)

P (7) ., S) ..
P'(x) (87) .

=5

It is clear that ¥ and ¥’ are equal for equal values of their
arguments:

Y () =P (). (XX.103)
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The correspondence between ¥ and ¥ was established in § 11. Since
one passes from (R) to (R) by the transformation .#, one has, applying

A X, R
AX2
/ SI
)
/
/
/
e
/
/ Fig. XX.1. The two ways of looking at a
=y ;’ Lorentz transformation: change of referential
\\\ ! (x — z) and transformation of the system
S S = 8.
~
~
-
X

(XX.85) and denoting the matrix associated with # by A:

P(Z) = AP (L17).
Therefore :
P (2) = A1P(Lx). (XX.104)

Comparing with equation (XX.85), one sees that the transformation
of states is realized by the inverse of the operator corresponding to
the change of referential.

These remarks also apply to the electromagnetic field in which
the Dirac particle moves. Denote this field by (4) and the field
obtained by the transformation % by (4'):

(A7) =Z(4).
We consider the following three (covariant) four-vectors:

A, (x) representing (A) in referential (R),
A/J (2) LB (A) X R} (R))
A,/ (x) » (A4") 4 (R).

We can repeat the argument given above for the spinors. One
obviously has: 5
A/ (x)=A4,(x). (XX.105)

M

But, according to (XX.81):
A (L 1x) = A, ()"

u
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whence
A/ (x) = A, (Lx),. (XX.106)

Suppose now that ¥(x) satisfies the Dirac equation in the potential

A (x):
l ( [y*(i0, —ed,)—m]¥ = 0. (XX.107)

Taking into account equalities (XX.103) and (XX.105), the invariance
of the form of the Dirac equation in the change of referential (R) — (R)

gives
[v*(i0, —ed,') —m]¥" = 0. (XX.108)

The invariance of form can therefore be expressed in the following
way:

If ¥Y(x) satisfies the Dirac equation in a potential A, (x), the state
Y'(x) obtained by the transformation & satisfies the Dirac equation
in the transformed potential A,'(x).

16. Invariance of the Law of Motion

Equations (XX.107) and (XX.108) are in general different. They
are identical when the external potential (4) is invariant in the trans-
fermation ¥, that is, when

A,/ (x) = A,(x).

7

In this case, ¥ and ¥’ obey the same wave equation. Thus, the law
of motion of the dynamical states is invariant in any transformation ¥
that conserves the external potential.

In all of the preceding work % was any orthochronous Lorentz
transformation. However, all that has been said can be repeated for
space-time translations [cf. note, p. 900].

The two properties mentioned above — invariance of form and in-
variance of the law of motion — remain valid when % represents a
Space or time translation.

17. Transformation Operators. Momentum, Angular Momentum,
Parity

To continue this analysis in accordance with the general scheme
set forth in Chapter XV we write the transformation law (XX.104)
in the form

¥ =T¥, (XX.109)
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where 7T is an appropriate linear operator. The invariance of the Dirac
equation in the transformation can then be expressed by the operator

relation
TA)T1=9(4"), (XX.110)

in which Z(A) and Z(A4’) denote the Dirac operators in the potentials
A and A’ respectively:

D(A) = y*ie,—eAd ). (XX.111)

The condition for the invariance of the law of motion under the
transformation % is then expressed by the commutation relation

[T, Z(4)]=0. (XX.112)

The operator 7' is easily constructed. It is the product of an operator
T® acting on the spin variables alone, and an operator 7'® acting
on the orbital variables alone:

T=T6 TO®,
Comparing (XX.109) and (XX.104), one sees that
T® = A-1, (XX.113)
where /A denotes the operator represented by the matrix /A defined

in § 11.

Let us derive the explicit form of 7' for the infinitesimal Lorentz
translations and ‘“rotations’, and for the reflection s.

For the translations one has 77 = 1. Let us introduce the differen-
tial operator

P, =1d (XX.114)

"

p, represents the energy-momentum four-vector (more precisely, the
covariant components of the energy-momentum four-vector). For

an infinitesimal translation ¢ along the direction of the axis z*, one

finds
T = 1-+iep,.

Consider now an “‘infinitesimal rotation” of angle ¢ in the plane
a*xf. In this case one has

(L) = o¥ —e L% 57

= x*—¢ (6”0‘ xﬂ — 5'”5 xa).
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If ws(@) is a particular component of the spinor ¥(z), then to the first

order in &:

Oy, Oy,
P (L) =~y () + 8<% S T8 W) ;

If we introduce the differential operator
L.s = x,ps— %P (XX.115)
the preceding equation takes the form
ws(La) ~ (1 —ie Lg)yps(x).
On the other hand, from (XX.90) and (XX.113),
T6) ~ (1 —ieS,p),

where S, is defined by equation (XX.92). Finally, formula (XX.109)
giving the law for the transformation of a spinor becomes in the “in-
finitesimal rotation” case

V'(x) =~ (1 —ieS,5)(1 —ie L,g)¥(x)
~ (1—ieJ ,5)¥(),

where

Jug = Lo+ 8. = %P5 — XpPs+ 5045 (XX.116)

The three spatial components Jo3, J31 and J12 of J,4 are associated
with infinitesimal rotations about the axes Oz, Oy and Oz respectively ;

they are the components of the total angular momentum J and one
has

J=L+S

L=rXxp, S - lo. (XX.117)

The components of L act on the orbital variables alone: L is the
orbital angular momentum. The components of § act on the internal
variables alone: § is the spin vector of the particle.

The reader will verify that J, L and S satisfy the commutation
relations characteristic of angular momenta and that § has the property

2_3
S 4
1

characteristic of a particle of spin 1.
The operator associated with spatial reflection!) will be called the

1) See Note added in proof, p. 956.
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parity operator and denoted by P. Let us denote by P®© the “orbital

parity” operator
POW(t r) = P(t,—r).

According to (XX.113) we have for P the choice between two ex-
pressions differing by a sign, expressions easily obtained from the

study of § 13 [cf. relation (XX.102)]. We adopt the most convenient
one:

P = 10PO (XX.118)

Note that P is Hermitean and that P2—=1.

18. Conservation Laws and Constants of the Motion

If the transformation depends on the time, the associated operator
T explicitly brings in the time dependence of ¥. This occurs notably
in the case of the time translations and the special Lorentz trans-
formations.

On the other hand, for any transformation independent of the time,
the action of T is defined independently of the law of motion of the state
vector to which it is applied. T can then be defined as a transformation
operator acting on the state-vectors and observables of the system
as was done in Chapter XV (Section II); the invariance properties
of the law of motion of the states may then be expressed in the form
of conservation laws.

For example, if . is a spatial transformation, 7' is a certain function
of the operators of reflection, infinitesimal translation and infinitesimal
rotation, that is, a certain function of P, J and p; 7" therefore commutes
with 90. And since

y0<i% _ HD) = Y(A) — m,

the commutation relation (XX.112) is equivalent, in this case, to
[T, Hp] = 0.

This condition is the same as the one studied in § XV.12, and what
was sald there concerning the connection between the symmetries
of the Hamiltonian and the laws of conservation may be applied here.

Thus, if 4,(x) is invariant under translation, one obtains the com-

mutation relations
[P’ H D} =0
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and the conservation of momentum. If A4 ,(x) is spherically symmet-
rical,

[J. Hp] = 0
and the total angular momentum is conserved. If 4 ,(x) is invariant
under reflection in the origin,

[P, Hp] =0

and the parity is conserved.

19. Time Reversal and Charge Conjugation

In this paragraph, we shall demonstrate the invariance of the form
of the Dirac equation under two antilinear operations, time reversal
and charge conjugation. It is convenient, for this, to introduce an
antiunitary operator K 1) of state-vector space having certain partic-
ularly simple general properties.

THE ANTIUNITARY OPERATOR K. K is by definition the antiunitary
operator which transforms ¢ into —p and conserves r and y*:

KrK'=r, KpK'= —p. (XX.119)
Ky Kt =y (u=0,1,2,3). (XX.120)

It will be shown that such an operator exists, is defined to within a
phase, and has the property

K= —1, (XX.121)

That K, if it exists, is defined to within a phase follows from
relations (XX.119-120) and the fact that state-vector space is irreduc-
ible with respect to the basic operators r, p and y“. Let us now choose
a particular representation, the Dirac representation for example.
Each operator y* is then represented by a certain matrix yp*. Denote
the operator represented by the ‘B matrix”’ which transforms the
yp" into their respective complex conjugates by Bp. Here, Bp will
be considered as a (unitary) operator of the total space and not as
an operator of spin space alone; it is a unitary operator commuting
with r and p. Let Kp be the complex-conjugation operator associated
with the representation (definition of § XV.5). Relations (XX.76)
give:

pH = Bp (Kp'y”KDT)BD?.

!) This operator is not the time reversal operator. The latter is denoted
below by Kr.
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Therefore, the antiunitary operator
K = BpKp

satisfies relations (XX.120). Since Bp commutes with r and p, and
since from the definition of Ap,

KprKp = r, ]{DPI(D = —P,

K also satisfies relations (XX.119). Finally, since Kp=Kp', (XX.77)
gives:
Bp(KpBpKp) = K2 = —1.

This is just (XX.121); it obviously remains true if A is multiplied
by any phase factor. Q.E.D.

CHARGE-CONJUGATION. Multiplying both sides of equation (XX.107)
on the left by K and using the fact that A is antilinear and commutes
with 9#, 0, and 4,(x), one finds:

[7#(—10,—eA (x))—m] K¥(z) = 0. (XX.122)

K'Y therefore satisfies a wave equation differing from the Dirac
equation only by the substitution of —i for 4i. Let us multiply both
sides by 5. Since > anticommutes with y* and commutes with all
of the other operators in the bracket on the left-hand side, we obtain

[*(i0,+ed, (x)) —m] s K¥(x) = 0. (X X.123)

Piut:
Ko = 45K (XX.124)
W () = KW (). (XX.125)

Equation (XX.123) now becomes:
[y(1d,+ed,(x) —m] ¥e(z) = 0. (XX.126)

The equation satisfied by Y¢(x) differs from the one satisfied by ¥(x)
only in the sign of the charge. Thus, if ¥(x) represents the motion
of a Dirac particle of mass m and charge e in the potential A (x), PC(x)
represents the motion of a Dirac particle of the same mass m and of
opposite charge (—e) in the same potential A4,(x).

The spinors ¥ and ¥¢ are called charge conjugates one of the other,
and the transformation K¢ is called charge conjugation.



CH. XX, § 19] THE DIRAC EQUATION 917

It follows from the properties of K and y5 that
Ee2=1. (XX.127)

Thus the correspondence between ¥ and W is reciprocal. It is
easy to show that charge conjugation commutes with translations
and orthochronous Lorentz transformations. More precisely, if LY
is the transform of ¥ in one of these transformations, its charge-
conjugate is L¥C in the case of a translation or a proper Lorentz

transformation, and — LY¥¢ in the case of a reflection (cf. Problem
XX.5).

TiME REVERSAL. The time reversal invariance of the Dirac equation
can be demonstrated directly, but it is just as simple to start from
the preceding results on charge conjugation.

A given potential A,(t, r) is created by a certain number of charges
in motion. The time-reversed potential 4 (¢, r), is obtained by rever-
sing the motion of these charges. In this operation the currents, and
therefore the magnetic field, change their sign while electric charges,
and therefore the electric field, remain unchanged

H'(t,r) = —H(—t,r), &'(t, r) = &{—1, ¢).
It follows that A4, “‘transforms like a pseudovector’:
At r)= —A(—tr) A’ (¢, r) = Ao(—t, r).
If we change ¢ into —¢ in equation (XX.126), we therefore have
[ 90109 —eAo (¢, r)) + Zkyk(ib;;—eAk’(t, r))—m]¥e(—t r)=0.
Let us multiply both sides by 9. Since this operator anticommutes

with 79 and commutes with y* we obtain:

[y#(i0,—ed,’ (t, r))—m]¥'(t,r) = 0 (XX.128)
if we put:
Pt r) = y5OPC(—t, ) (XX.129)

= YWKY(—t,r).

Let us introduce the (antiunitary) time-reversal operator:

Kp = y0K (XX.130)

¥'(t, r) is by definition the time-reversal transform of ¥(—t, r). It
satisfies equation (X X.128). Therefore, if ¥ satisfies the Dirac equation
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in the potential A4,, its time-reversal transform ¥’ satisfies the Dirac
equation in the potential 4, obtained from A, by time reversal.
In particular, if A4, is invariant under time reversal (for example,
if the particle is in a stationary electric field: A=0,04,/0t=0), ¥
and ¥’ both obey the same Dirac equation.
From the properties of 90 and K, one obtains:

Kp? = —1. (XX.131)

This result, characteristic of systems of half-integral angular momenta,
has already been obtained in the non-relativistic case [eq. (XV.88)].
The consequences, in particular Kramers degeneracy, are also valid
here.

Expressing Bp in terms of the ¢ and o (cf. end of § 10), we easily
obtain from definitions (XX.124) and (XX.130) the equivalent
relations '

I(C = 1@2 Oy KD

KT = iO'yKD.

These are useful when manipulating the operators K¢ and Krp in
the Dirac representation.

20. Gauge Invariance

For completeness, we shall mention here the property of gauge
invariance (cf. § XXI.20).

Changing the gauge of the electromagnetic potential means replacing
the components A4, (x) by

A,/ (x) = A,(x)—0,G(x), (XX.132)

"

where G/(z) is an arbitrary function of the space-time coordinates.
This gives

AO':AO_%_C;, A=A+ V(.
The electric and magnetic fields are invariant in such a transformation.
If ¥(x) is a solution of the Dirac equation in the potential 4,, then

clearly
V' (z) = eC @Y (x) (XX.133)

is a solution of the Dirac equation in the potential 4,". This is called
the gauge-invariance property of the Dirac equation.
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IV. INTERPRETATION OF THE OPERATORS
AND SIMPLE SOLUTIONS

21. The Dirac Equation and the Correspondence Principle

When the electromagnetic field is not zero, the solutions of the
Dirac equation satisfy a second-order equation different to the Klein—
Gordon equation but conforming with the correspondence principle.

To obtain this equation, one can start from the covariant form
(XX.50) and write that the action of the operator (—iy*D;—m) on
the left-hand side gives zero:

[v*y#D,D,+m?]¥ = 0. (XX.134)
From the algebraic properties of the y* operators, one obtains
Py = gt 30 7] (XX.135)
By renaming the dummy indices, we have
[ v 1D;,D= — Y% v 1D Dy = § [¥' v*1 [Da, D). (XX.136)
and, from the definition of the operator D, [eq. (XX.10)]
[D;, D,] = ie[0;, A,]+ie[4;,9,]

. (OA# dA,

. (XX.137)
=ie| =~ W) = ieFy,.

Equations (XX.135-137) give
y'9*D,D, = D, D*{eS*F,, (XX.138)

where S* represents the spin of the particle [definition (XX.92)].
Equation (XX.134) can therefore be put in the form

[D,D*+-eS*F,,+m?]¥ = 0. (XX.139)

Comparing (XX.139) with the form (XX.30') of the Klein—-Gordon
equation, it is seen that it differs by the presence of the term

eS"F,,, (XX.140)

which is a term coupling the spin of the particle to the electromagnetic
field. This term has no classical analogue and its contribution is neg-
ligible when the classical approximation is valid. The motion of a
Dirac wave packet is then the same as the motion of a Klein—-Gordon
wave packet.
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22. Dynamical Variables of a Dirac Particle

From time to time we have given the physical interpretation of a
certain number of dynamical variables of the Dirac theory. We shall
now take up this question in a more systematic way, and indicate,
in particular, the variables of the Quantum Theory which correspond
to the different classical quantities of § 4.

The relativistic invariance of the theory plays no essential role in
this discussion. We adopt the same point of view as in non-relativistic
Quantum Mechanics: the system is defined by giving a certain number
of dynamical variables obeying a well-defined algebra, and the Dirac
equation — in the Dirac form [eqgs. (XX.36) and (XX.44)] — describes
the evolution of the dynamical states in the Schrodinger “representa-
tion”.

In what follows time is therefore treated as a simple parameter,
while the spatial coordinates are included among the dynamical
variables of the system. The fundamental variables are r and p together
with the internal variables a and . The whole of representation theory
applies here without change. In particular, in the Dirac representation,
the state-vectors |¥), |@), ..., are represented by four-component wave
functions, ¥(r), @(r), ... of the coordinates z, y, z. In this represen-
tation the scalar product (@|¥) is defined as a summation over the
4 possible values of the index representing the internal degree of freedom
and an integration over the coordinates x, ¥, z:

(DY) = ;J” @s*(r) ys(r) dr.

This definition of the scalar product is consistent with the definition
of the position probability density given in § 6 [formula (XX.35)].
More generally, we shall adopt here without change the statistical
interpretation of the theory as set forth in the first part of this book;
in particular, the average value of an operator ¢ for a given state
of the system is given by

(@) =<u|Q|u),

where |u) is the normalized ket representing that state.
The observables of the theory that do not act on the internal degree
of freedom have an obvious interpretation; in particular we have:
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r, the position vector,

p, the (Lagrange canonical) momentum, called the momentum in
this book.

7t = p—eA(r, t), the mechanical momentum.

Among the functions of r we have the operator

o(r —ro),

which is the projector onto the subspace of the eigenvalue ry; it
represents the position probability density at the point ro.

Among the observables depending on the internal degree of freedom
we define 1):

the energy:

H = ep+a-ntpm; (XX.141)
the relativistic mass:
M =H—ep =a -nt+fm, (XX.142)
the current density at r:
j(ro) = ad(r—ry); (XX.143)
the total angular momentum:
] = (rxp)+io; (XX.144)
the spin:
S = }o; (XX.145)
the parity:
P = PO, (XX.146)

The definitions of H and M are based on the correspondence with
classical mechanics; that of j(rg) follows from the equation of continu-
ity; those of ] and § are related to the transformations of the states
under rotation and that of P to the transformations under reflection.

Finally, the correspondence principle leads to the interpretation of o
as the velocity of the particle. This interpretation is also suggested by
the expression for the current density. To establish it, we compare
the classical equations (XX.18), (XX.19) and (XX.21) with the corre-
sponding quantum equations, and to do this we must obviously pass

1) Note that p depends on the choice of gauge; only the momentum of
the total system (particle + electromagnetic field) is independent of this

choice. The same remarks apply to the energy H and to the angular momentum
J (cf. § XXT.23).
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over to the Heisenberg ‘‘representation’”. The Heisenberg equations
for the variables r and = (in the Heisenberg ‘‘representation’) are
written:

dr :

Et-=—'l[r, H]

dr . ot
a;z—l[ﬂ, H]-‘f—a.

Replacing H and 7 on the right-hand side by the expressions given
above and using the commutation or anti-commutation relations for
the operators r, p, a and £, one finds, after a rather long but straight-
forward calculation (Problem XX.6),

dr
5= (XX.147)
‘(ii—’; = e(& +ax H). (XX.148)

Also, from (XX.142) and the properties of &, one has the identity
n=3(Ma+oall). (XX.149)

Equations (XX.147-149) between dynamical variables in the
Heisenberg ‘‘representation” may be identified respectively with
equations (XX.18), (XX.21) and (XX.19) between the classical dy-
namical variables if one treats a as the classical velocity v.

Note that the components of the velocity a do not commute, and
that each of them has in all two eigenvalues, +¢ and —c¢ (41 and
—1 in the units used here). Here we have no difficulty of principle,
but simply an additional indication that the classical picture of the
phenomena should not be taken too seriously. We shall return to
this question in § 37.

23. The Free Electron. Plane Waves

In the rest of this section we examine the solutions of the Dirac
equation, first in the absence of a field, then in a static central poten-
tial. Solving the Dirac equation is then equivalent to finding the eigen-
solutions of the Hamiltonian Hp. Unless otherwise indicated, the
calculations will be made in the Dirac representation, and we shall
frequently make use of the operators g1, g2, o3 and oz, gy, 0, introduced
in § 7.
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We first suppose the field null. The Hamiltonian Hp then commutes
with the three components of the momentum. We therefore wish
to find the eigensolutions of Hj corresponding to a well-defined value
p for the momentum. Such solutions are plane waves, that is, functions

of the form
'u,(P)eiP'l':

where u(p) is a four-component spinor independent of r. It is deter-
mined by the eigenvalue equation

Hu(p) = Eu(p), (XX.150)

where H is the following operator of &) space:
H = a-p-+fm = pi1(c-p)+o3m. (XX.151)
A simple calculation gives:
H? = p24+-m2,

The only possible eigenvalues of H are therefore the two values
+ Vp2+ms?, ie.:
E =¢l, (e=4+1) X152
E’p = Vm ( )
It is easy to show — for example by using the fact that g» anticom-
mutes with H — that these two values are doubly degenerate.
The component o-p/2p of the spin in the direction of p commutes
with H. This can be seen from the last of expressions (XX.151); (the
other spin components do not commute with H). We are therefore
led to look for the common eigensolutions of H and o-p/2p. We
obtain the following 4 pairs of eigenvalues:

(+Ep,+3) (+Ep,—%) (—Ep+3) (—Ep—3)

To each of these pairs there corresponds a single eigenstate. The
corresponding eigenspinor is easily determined from the two eigen-
value equations. An alternative method for finding this spinor will
be given in the following paragraph.

The components of the 4 eigenspinors (normalized to unity) are given
in Table XX.3 for the particularly simple case when p is directed along
the z axis. Recall that, in the Dirac representation,  and o, are
represented by diagonal matrices.
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\ TABLE XX.3

Components of the spinors corresponding to the wave of momentum p = (0, 0, p)

in the Dirac representation (E, = V'me + p2).

Energy Positive Negative
E = + Ep ‘ — Ep
Spin 9 ~ ) N
o p/2p = b0 + % — 3 + 3 — %
_ N
Uy = 1 0 .Ep Tm 0
4
= 0 1 0
( 2By \b “ B, +m
7, ) X ,
Uz = EW, O ]. | 0
_ P |
Ug = 0 Ep + == 0 |I 1

The 4 spinors are normalized to unity: u'u = 1.

24. Construction of the Plane Waves by a Lorentz Transformation

When 4,=0, any Lorentz transform of a solution of the Dirac
equation is another solution of the Dirac equation. In particular,
any plane wave of momentum p can be obtained by a Lorentz
transformation from a plane wave of momentum zero. We shall
now describe a method based on this remark for constructing the
spinors u(p) of the preceding paragraph.

For a zero momentum, equation (XX.150) becomes

pmu(0) = Eu(0).

The two possible eigenvalues are +m and —m. To the eigenvalue
em(e= + 1) there corresponds the spinor «@(0); it is an eigen-
vector of the operator f. We shall suppose it normalized to unity,
and we fix the direction of the spin in an arbitrary way; «“(0)
i1s then defined up to a phase.

The plane wave

yjo(e) = '@ ( 0)e —iemt

1s a solution of the Dirac equation corresponding to a momentum
zero and an energy em, that is, to the energy-momentum four-
vector (em, 0).

Consider the same solution in a new referential having a velocity
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v=—ple)/m2+p2= —pleE, with respect to the preceding one. In
this new referential, the energy-momentum of the particle is

P = (B, p). (XX.153)
The solution is there represented by the plane wave:
P = Asp(v) u®(0) exp (—ip-x,)
= [Aep(v) u9(0)] exp [—i(eHyt—p-r)].

The term in brackets is therefore proportional to one of the sought-
for spinors u(p) which we shall henceforth denote by u®(p). Its
norm is the time component of the associated current four-vector;
it may be obtained from the current four-vector associated with
u'¥(0) by a Lorentz transformation; it is therefore equal to:

b= (1-v2)"t=E,/m.
We therefore adopt the definition:
w®(p) = b Agp(v) u®(0).

Substituting (XX.97) into this definition with the values of v
and b given above, one finds

wO(p) = [2Bp(m-+Bp) | [m+Bp+ea-plud(0), (XX.154)

which is the required expression. In particular if «(0) is an eigen-
state of (o-p), then so is u®(p), which is therefore in this case
one of the spinors defined in the preceding paragraph. In particular
one obtains the results of Table 3 when p is directed along the z
axis.

Expression (XX.154) may also be put in the form
w(p) = [2Ep(m+Bp) 17 [m+pip, Ju®(0),  (XX.155)

in which p, represents the energy-momentum four-vector defined
by equation (XX.153).

25. Central Potential

We now look for the eigensolutions of a Dirac particle in a static
central potential V(r). The Dirac Hamiltonian is then

Hp = a-p+pm-+V(r). (XX.156)
It is invariant under rotation and reflection:

[Hp, J]=0, [ g, £']=148,
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We therefore look for eigensolutions of well-defined angular momen-
tum and parity.

It is convenient to write the solutions ¥ in the form

P @) (XX.157)

_(w (s
- (w) L g (w) . (XX.158)

Projecting ¥ onto the subspaces f=+1 and f= —1, one finds

where

@ 0 ,
M145) ¥ - (0) H1-B) ¥ - (x> (XX.159)
@ and y are functions of r and of the spin component u along the z
axis; they may also be considered as functions of the radial variable
r and of the “angular variables” (0, ¢, u): in this they are entirely
analogous to the wave functions of the Pauli theory.

Let us now suppose that ¥ is a simultaneous eigenfunction of J2,
J, and P. We denote the angular momentum quantum numbers by
(JM). For convenience, we indicate the parity with the aid of the
quantum number w such that:

(+1 for states of parity (—)/**

XX.160
v ( — 1 for states of parity (—)/~* ( )
Thus, by hypothesis:
12<¢> = J(J+1) ((p), Jz<¢> B M(@)
’ * o X/ (XX.161)

P(o><f) —_ (_)J+m< @ )
X

Let %Y (0, ¢, u) be the function of total angular momentum (JM)
formed by the composition of a spin } with the spherical harmonics
of order L. The parity of this function is (—)Z. Also, according to

the rules for the composition of angular momenta, L can take only
the two values

L=l=J+}w L=l'=J-}w (XX.162)
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and the two functions %) and %} are of opposite parity, that of
the first being (—)’**” and that of the second (—)’~¥®. According
to equations (XX.161), @ is a function of (r, 0, ¢, u) of angular momen-
tum (J M) and of parity (—)’*¥@; it is therefore necessarily equal to
the product of a function of » by #M. A similar argument shows
that y is equal to the product of a function of r by % ,.

In conclusion, if W ¥ represents a state of angular momentum
(JM) and of parity (—)’**@, it can be written in the form

o M
£y > (XX.163)

1
v -3,
©F T r \iG ¥,

where [ and I’ are given by equations (XX.162), and F and G are
arbitrary functions of r.

Consider now the eigenvalue problem

To solve this equation we separate the ‘““angular’” variables from the
radial variables in the operator Hp. The method to be followed is
wholly analogous to the one of Chapter IX.

We introduce the radial momentum p, and the ‘‘radial velocity”
&

.10
Pr = —1;’6—;7 (XX.].65)
xr = o-F = p1(c-r)/r. (XX.166)

From identity (XIII.83), one obtains

(a-r)(a-p) = (o-r)(c-p) =r-p+ic-L
= rpy+i(l4+o-L).

Whence, multiplying on the left by «./r and using the obvious property
o2=1, the identity:

a-pzoc,(pr-l-;i(l—{—c-L)). (XX.167)

Let us examine the operator 1+4o-L. One easily shows that

1+o-L=f2+3—L2
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Further, from (XX.163), it is clear that the action of L2 on W ¥ is
equivalent to that of the operator

(J+3mB) I +3mB+1) = J(J+1)+1+imBT+1).
Therefore:
(1+e-L)¥5) = —3w(2J + 1)8¥}. (XX.168)

Substituting relations (XX.167) and (XX.168) into equation
(XX.164), one obtains

[ oo~ 5} L omp 4 i) | = mr

v

By replacing the eigenfunction by expression (XX.163), the opera-
tors pr and «r by their definitions (XX.165) and (XX.166) and using
the identites (cf. Problem XX.8):

(o-r) @11}1 = - @l’.l}[

~ ' (XX.169)
(c-r)¥,Y=—-¥F

this equation leads to two coupled differential equations for the radial
functions F(r) and G(r), namely

[_%+?%ﬁ]G=(E—m—V)F (XX.170a)

1
[d%« +”’—(Jri2—)] F— (B+m—V)G. (XX.1700)
These equations here play the role of equation (IX.20) in the non-
relativistic theory.

After integration over the angles, the norm of ¥_¥ is given by the
expression:

PP = [ (|F]P+|62) dr (XX.171)
0

to be compared with expression (IX.21).

The discussion of the regularity of F and @ is in all ways analogous
to the discussion of the regularity of #;(r) in the non-relativistic
theory. We shall not go into the details here.

26. Free Spherical Waves

For V=0, the method of the preceding paragraph gives the sta-
tionary solutions of the Dirac equation of the free electron which
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correspond to well-defined angular momentum and parity; these are
the Dirac free spherical waves.
In this case, eq. (XX.170b) gives,

1 d m(J+r1§):| .
_E+m[d_r+_7— F. (XX.172)

Substituting this expression into (XX.170a), one finds:

SR [RE.LCE 211 | CWCE S )
= F=~x = Jl& T JF
@ ) tmtd],
:__d72+ 2 2]F'

It can easily be shown that

T+ +w+3) = [I+1),

where [ is the integer defined by equation (XX.162). The preceding
equation is therefore identical with the free wave radial equation
of the non-relativistic theory if one substitutes for (K2—m2) the
product of 2m by the non-relativistic energy. It has one and only one
regular solution for any positive value of (E2-—m?2). If one puts

k=VE—m2  (|E|>m)

dz  I(l+1) :l B
[dﬂ— Tk | F=0.

it becomes

Its regular solution (defined up to a constant) is given by
= rjl(kr).

The corresponding G function is obtained by applying relation
(XX.172). Using the recursion relations (B.42) and (B.43) [the first
for w=1, the second for w= —1, both being written with y=0], one
finds

wk

G:E—i—m

ri(ker).

In conclusion, for any value of the energy K situated outside the
interval (—m, 4-m), there exists a free spherical wave of angular
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momentum (JM) and parity (—)/**@. In the form (XX.163), it is
written

St.

iwle—m[i jp(VE2~m2 r) .yg/l,:ﬂ;z

> (XX.173)
where: ¢ =E/|E|.

27. The Hydrogen Atom

As a second example, let us look for the bound states of an electron
in the Coulomb field of an atomic nucleus. The nucleus will be treated
as a point charge equal to (—Z) times the charge of the electron,
and fixed at the origin1). We must therefore find the bound states of
a Dirac particle in the central potential

V=-22,

r

This eigenvalue problem can be exactly solved. Here we shall give
only the broad outline of the method, which is a simple extension
of the one set forth in § XI.4.

It is clear from an examination of the asymptotic behavior of the
solutions of the set of radial equations (XX.170) that F must be
contained in the interval (—m, +m). The desired eigenvalues are
those for which the solutions that are regular at the origin behave
asymptotically like exp(—)/m2— E2r).

Put:

_ % _1/m— K
% = Jm2— B2 v ) (XX.174)
G = Jg? T =w(J+1) (XX.175)
and introduce the variable
0 = xnr. (XX.176)
The set (XX.170) is equivalent to
<_i+f>az<_v+é>1«" (XX.177a)
do " o 0
d T ¢
<_ . _> F = <p—1 I _> G. (XX.177b)
do " o 0

) This supposes the nucleus infinitely heavy. The error thus made cannot
be neglected, for it is of the order of magnitude of the relativistic effects. It
is largely compensated for if the mass of the electron m is everywhere replaced
by the reduced mass.
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We look for solutions of the form

F(o) =o%e(ap+aip+ag02+...) (ap+0) (XX.178a)
Glo)=o0%e(bo+bro+bog®+...) (bo#0). (XX.178b)

Substituting these expansions into equations (XX.177) and equating
terms of successive orders one obtains a series of equations of which
the first fixes s and the subsequent ones permit the determination
of the coefficients ag, bo, a1, b1, ..., an, by ... by recurrence. The equation
in s has the two roots + /72— (2. A necessary and sufficient condition
for F and G to fulfil the conditions of regularity at the origin
F(0)=G(0)=0, is that s>0. Thus only the positive root is to be
kept 1):

s =)12—2,

Thus for each value of E there is one solution that is regular at
the origin. In general it behaves like p%e? at infinity unless the two
expansions (XX.178) have only a finite number of terms. This can
only happen for certain particular values of E; these are the required
energy levels. The calculation shows that they are given by the

expression
]

where 7/, the radial quantum number, is the degree of the polynomials

figuring in expressions (XX.178). For each positive value of n’ there

exists a regular solution for each of the two values of @w; for n'=0

there exists a regular solution for w= — 1, but no solution for w= 1.
Let us introduce the principal quantum number

n=J+14+n'

The preceding results may then be reformulated in the following way.
The levels of the discrete spectrum depend on the two quantum
numbers »n and J according to the formula

=%
Enpy=m |:1 d .« :| (XX.179)
(n — &;)2
gr=dJ +3% —V(J +3)? — Z24, (XX.179)

1) We suppose { < ||, i.e. Ze2 < (J + }). This condition is always fulfilled
if Z < 137, which is always the case in practice. If it were not, the discussion
of the regularity conditions at the origin would be much more delicate.
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where n can take all positive integral values and J all half-integral
values in the interval (0, n):

(M

o . - 3
n-—l, 2,...,00, J——- ,7,...,7?/—%.

To each value of J there correspond two series of (2J-1) solutions
of opposite parities, except for the value J=n—1 to which there
corresponds a single series of (2J4-1) solutions of parity (— )71
Rather than specify the parities, one may instead specify the values
of [, the orbital angular momentum of the first two components of
the spinor; recall that the parity of the spinor is (—).

The spectroscopic notation nly is generally used to distinguish these
different series of solutions one from another. The following table
lists the first few levels in increasing order, with the corresponding
spectroscopic terms [each term has a degeneracy of order 2J-1]:

n:1 J:‘%‘ 181/’ (n,:O)
n=2 J:% 281/2 2p1/1 (n,‘—‘ 1)
J=3 2p.,, (n"=0)
m=3 J :_% 381/, 3p)/’ (n, T 2)
J 2% 3ps/z 3(:13/2 (n, = l)
J—5 3d,  (n'-0).

If expression (XX.179) is expanded into a power series in Z2e?

one finds
_ Z24  (Z2e42 [ n 3 :|
EnJ—m[l_ 2n2 —— 2n4 <J+%—Z>+... .

The first term is the mass term. The second, —Z2%4/2n2, is exactly
equal to the quantity given by the non-relativistic theory. The third
and following terms give the relativistic corrections. These corrections
partially remove the “accidental degeneracy’ of the non-relativistic
levels: for n fixed, the binding energy m — E of each term is slightly
increased ; the increase depends only on J, and is larger for smaller J.

The experimental results on the fine structure of the hydrogen
atom and hydrogen-like atoms (notably He*) are in broad agreement
with these predictions.

However, the agreement is not perfect. The largest discrepancy
is observed in the fine structure of the n=2 levels of the hydrogen
atom 1). In the non-relativistic approximation, the three levels 2s, ,

1) W. E. Lamb and R. C. Retherford, Phys. Rev. 72 (1947) 241.
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2py, and 2ps;, are equal. In the Dirac theory, the levels 2s,, and 2p,,
are still equal, while the 2p., level is slightly lower (the separation
is of the order of 10-%eV). The level distance 2p, —2p. agrees with
the theory but the level 2s, is lower than the level 2p,, and the
distance 2s,, — 2p,;, is equal to about a tenth of the distance 2p,, — 2p,,.
This effect is known as the Lamb shift. To explain it, we need a rigorous
treatment of the interaction between the electron, the proton and the
quantized electromagnetic field; in the Dirac theory one retains only
the Coulomb potential which is the main term in that interaction;
the Lamb shift represents “radiative corrections” to this approxima-
tion 1),

V. NON-RELATIVISTIC LIMIT OF THE DIRAC EQUATION

28. Large and Small Components

Consider the positive energy plane waves whose components are
given in Table XX.3. Let us suppose that the energy F, differs little
from the rest energy:

W=E,—mIm.

The non-relativistic approximation is then wvalid, for the kinetic
energy W is nearly equal to lmw2 and we have

_le 1.
m 37 <

It will be seen that the non-vanishing component corresponding
to f= +1 is then much larger than the one corresponding to f= —1:

- u3_ W %N 1)
smtt 2=(m) ~o(F) <

B Uy W 3 <v>

A similar observation applies for the free spherical waves [cf. expres-
sion (XX.173)] or for the eigenfunctions of the hydrogen atom (cf.

1) The most recent measurements give 1057.77 + 0.70 Mc/s (Mc/s = Mega-
cycle per second) for the separation 2s, .~ 2Py, the theoretical value obtained
when the “radiative corrections” predicted by Quantum Electrodynamics
are taken into account is 1057.99 + 0.2 Me/s [C. M. Sommerfield, Phys. Rev.
107 (1957) 328].
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notably the particular eigensolutions defined in Problem XX.10).
This suggests that in the non-relativistic approximation two of the
components of the spinor ¥, the components Y3 and ¥, corresponding
to the eigenvalue —1 of §, are very small and may be neglected, and
that the Dirac theory is then equivalent to a two-component theory.

In order to put this point properly in evidence, we write the Dirac
spinor ¥ in the form (XX.157), @ and y being defined by equations
(XX.158) or (XX.159). As has already been noted in § 25, @ and y
may be regarded as vectors of the state-vector space of the two
component non-relativistic theory.

With these notations the Dirac equation relative to a stationary
state of energy £ is written, in the Dirac form and representation:

(- (p—eA))y+(ep+m)D = ED (XX.180a)
(- (p—eA))D+(ep—m)y = Ey. (XX.180b)

Let us put:
T = p—eA, M =E—ep

We=B-m, M =ymtM) = mpy(W —ep). 15D

Solving equation (XX.180b) for y and then substituting into equation
(XX.180a), we obtain

1
1=53p (6m)P (XX.182)
1
I:(c-n) ST (6-7) + ecp:l D =Wao. (XX.183)
The set of equations (XX.182-183) is exactly equivalent to the Dirac
equation.
In the non-relativistic limit
W, ep, p, eA < m, M ~ m. (XX.184)
It is clear from equation (XX.182) that
1LP

and that the ratio of these two quantities is of the order of p/m, i.e.
v/c. y and @ are known as the small and large components respectively.

In the rest of this section, we shall make use of the concept of
“even” and ‘“‘odd’ operators. By definition:

(¢) an operator Z is “even’ if it has no matrix element linking
small and large components (examples: p, r, L, o, J, P(ro), p);
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(22) an operator £ is “odd” if its non-vanishing matrix elements
link ‘small and large components (examples: a, fa, y°, j(ro)).

It is equivalent to say that & is an operator that commutes with
B, # an operator that anticommutes with f:

P =pPB, I = —pIB. (XX.185)

ny o is the sum of an “even’ and an “o operator,
Any operator ¢ is th fan “ ” and an “odd” tor, and
furthermore this decomposition is unique:

Q = 3[Q+pRB1+3[Q— B

The product of two “even’ or of two “odd” operators is an “‘even”
operator; the product of an “even’ operator by an “odd” operator
is an “odd” operator.

29. The Pauli Theory as the Non-relativistic Limit of the Dirac
Theory

We now return to the system of equations (XX.182-183). In
neglecting the small components, one makes an error of order »2/c?
in the normalization of the wave function. An error of the same order
is made in replacing the operator M’ in equation (XX.183) by the
mass m. In this approximation equation (XX.183) takes the form
of an eigenvalue equation 1):

Hy,  ®=Wo (XX.186)
of a certain Hamiltonian
||
Hau.y. =3~ (o-m) (o-7) + e (XX.187)

acting on the two-component wave function @. Equation (XX.186)
defines the energy W to within v2/c2.

In order to put H,, in a more familiar form we apply identity
(XIII.83), noting that the components of ® do not commute, and
that therefore:

T X 1t =1ecurl A = ie .
One then obtains

(p—eA)2 — % (G- ) + eg. (XX.188)

) 1)  Equation (XX.183) is not a true eigenvalue equation since the operator
In brackets on the left-hand side depends on the “eigenvalue” W through M’.
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This will be recognized as the Hamiltonian of the Pauli theory
corresponding to a particle of mass m, charge e and intrinsic angular
momentum :

W= UBO (us = Bohr magneton = ¢/2m).

Not only does the Dirac theory predict the existence of an intrinsic
magnetic moment for the electron, but it gives its correct value
(§ XIII.18). This is one of the major successes of the theory 1).

In order to prove that the Dirac theory in the approximation
considered here is equivalent to the two-component Pauli theory,
we must be able to find operators corresponding to the operators in

the Dirac theory but acting only on the large components.

" This can actually be done provided that the said operators enter
into the calculations only through their matrix elements between
states V', ¥" whose energy is positive and sufficiently close to that
of the rest mass for the non-relativistic approximation to be valid.

If we are concerned with an even operator &, the matrix element
(P"|2|¥") takes the form

<¢Ill!@|¢l> _|_ <X”|E@

2

The second term is (v/c)? times smaller than the first, and may be
neglected in the approximation discussed here.  may then be replaced
by its projection on the space of the large components: this projection
represents in the non-relativistic Pauli theory the physical quantity
represented by £ in the Dirac theory.

1) In actual fact, the experimental value puexp differs slightly from this
theoretical value for the magnetic moment of the electron [P. Kusch and
H. M. Foley, Phys. Rev. 72 (1947) 1256]. More recent measurements give

Atexp = ttexp — un = (1.165-20.011) X 103 ugp.

The ‘radiative corrections” of Quantum Electrodynamics account for the
existence of this anomalous magnetic moment; they give (Sommerfield, loc.
cit.):

Apm = 1.163 X 1073 up.

Note in passing that the equation obtained by adding the term xugo,, B
to the Dirac operator has all the invariance properties of the Dirac equation,
and this for any given value of the numerical constant »; such an equation
describes a particle of mass m, of charge e and of intrinsic magnetic moment

(1 4+ %) ug.
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If we are concerned with an odd operator, .#, one has
<Yl"|af| [P1> — <@Il|jlxl>+<zlr|jl®l>.

Here the small components are involved explicitly in each term on

the right-hand side. In the approximation in question however equa-
tion (XX.182) gives

c T
IZ/ = 01 om I®>
from which
l " 7
I =5 (|1 (o m) + (o) 01.7] ).

# may therefore be replaced by the projection on the space of the
large components of the operator

:Z%[fel(c'ﬂ)—}-(c-n)glf].

Thus the “velocity” a=p;6 may be replaced by the operator in
the space of the large components

T o(oc-m)+ (6-m)o
m 2m )

i

Similarly, the current density at the point ry:

j(ro) = p166(r—ry)

may be replaced by the operator in the space of the large components:

(j(r))nr. = d(r—ro) @ ("-") + (9_") & O(r — ro)

2m 2m

or again, applying identity (XIII.83):

(j(ro))n.r. = j® + jab (XX.189)
jo — dr—ro) ™+ md(r—ro) (XX.190a)

2m
jm = 2r—ro) (PX °)2;?(P xX0)olr—ro)  xx.1900)

In this limit, the Dirac electric current ej is therefore made up of two
terms. The first, ej®, is identical with the current of the Schriodinger
theory (cf. Problem IV.1). In order to interpret the second we consider
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its matrix element between the large components @’ and @". The
calculation shows that

(D" |ejD|P") = %?I curl (@"|6(r—ro) o|D").
This is a magnetic current term, and the quantity
e n” ’ 4 ’
5 (D"|6(r —r¢) 6|DP") = (D"|d(r—ro) w|D")

may be interpreted as a magnetic moment density. It will be seen
that the divergence of this magnetic current vanishes, and therefore
that it gives no contribution to the equation of continuity.

30. Application: Hyperfine Structure and Dipole-Dipole Coupling

We now consider an electron in the electric field of an atom, de-
seribed by a certain electrostatic potential ¢(r), and examine the effect
of the field created by the magnetic moment M of the nucleus. The
field created by a magnetic dipole M situated at the origin of coor-
dinates may be represented by the vector potential:

Mxr
7"3
= curl (M/r). (XX.191)

A=

(XX.191)

The presence of this field leads to an additional term —ea-A in the
Dirac Hamiltonian.

To determine the effect of this field in the non-relativistic approx-
imation we can calculate the non-relativistic limit of the operator
—ea.-A by the method of the preceding paragraph. We can equally
well directly examine the modifications of the Pauli Hamiltonian
(X X.188) due to the presence of M. These two methods are equivalent.
We shall adopt the second one here.

If we retain only terms linear in M, the Pauli Hamiltonian contains
the two supplementary terms:

e
Ia=—% (p-A+A-p)

e
Ib————%(a-%)=—p.-9’f,

where # is the field created by the dipole M.
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I, is a spin-orbit coupling term (spin of the nucleus, orbit of the
electron). Clearly, [cf. eq. (XX.191")] div A=0 whence:

Ia:—%A’P

Substituting expression (XX.191) onto the right-hand side, and

introducing the orbital angular momentum of the electron L = r x p,

one finds:

L. '3". (XX.192)
mr

Ip is the spin-spin or dipole-dipole coupling term. It can be cal-
culated with the aid of (XX.191):

Iy = —p (V x A) = —”'[‘”<ng>]

~ (u-M) A(l) — (V) (M-7)] (%)

7

(XX.193)

When 70, I can easily be calculated by performing the differentia-
tion, which gives:
_3(M-r) (por) — (M-p) 2
7’ )

Considered as a simple function, expression (XX.193) has a singularity
in 1/r3 at the origin. To determine the action of the operator Iy, it
I8 convenient to examine the result of integration of the product
of this quantity by a regular function f(r) in a small domain about
the point r—0. To this effect, we write Ip in the form

I = § (u-M) AG) ~[(7) (M-V) = § (- M) A] (-}) (XX.103)
T-[‘he second term in this expression is a second order tensor operator
In the space of functions of r; if, to effect the integration mentioned
above, f(r) is expanded into spherical harmonics. Only coefficients of
Spherical harmonics of order 2 will contribute to the integration over
the angles; these vanish at the origin at least as rapidly as 72; the
c@.ntriloution of the second term of (XX.193’) also vanishes at the
origin in spite of the singularity in 1/r3. With the aid of identity
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(A.12), the first term may be put in the form — (§x) (@ M)d(r). Thus,
for any r, including the origin:

Ip=— 8—; (M-p) 8(r) — 7—,1,; |:3<M -5> (p.-£> . (M-p.)]. (XX.194)

r r

Expressions (XX.192) and (XX.194) are valid in the non-relativistic
imit and allow the determination of the hyperfine structure of atomic
levels to within v2/c2. In particular, the contribution of the s-electrons to
the hyperfine structure is given by the contact term — (§x) (- M)d(r).

31. Higher-order Corrections and the Foldy-Wouthuysen
Transformation

To the lowest order in v/c, the Dirac theory is equivalent to the
two-component Pauli theory. It is possible to obtain higher-order
relativistic corrections by starting as before from equations (XX.182-
183). To this effect, one replaces 1/M’ by its expansion in powers of

(W —eg)/2m]:
1 1 W—ep W — ep)?
M'_E[l_ om +< om )‘]

\/sz;zw) \41;;> ( ) ’

this is essentially a power series expansion in v2/c2. If this expansion
is stopped at the first term one obtains the Pauli theory, as in § 29.
Higher-order relativistic corrections are obtained by taking the ex-
pansion beyond the first term. However, once corrections of the order
of v2/c2 are taken into account, the Dirac theory in the form (XX.182-
183) ceases to be formally equivalent to a two-component theory.
This is because:

Since:

(1) the contribution from the small components can no longer
be neglected, neither in the normalization, nor in the calculation of
matrix elements of even operators;

(i3) equation (XX.183) is properly speaking no longer an eigen-
value equation (cf. note, p. 935).



cH. XX, § 32] THE DIRAC EQUATION 941

Although the method is not thereby absolutely condemned, its
application and the interpretation of the results becomes rather
delicate. Foldy and Wouthuysen 1) have proposed another method
which allows one to approximate to the Dirac theory by a two-
component theory to any given order in v/c. It essentially consists
in effecting a suitably chosen unitary transformation on the wave
functions and operators of the Dirac theory. In the new ‘“‘representa-
tion” — which we shall call the FW “representation” — the Dirac
Hamiltonian is an “even’ operator to the given order in v/c, so that
in this approximation the small and the large components are com-
pletely decoupled in the wave equation. One may therefore simply
ignore the small components, thereby obtaining the desired two-
component theory. The operators of the two-component theory are
then obtained from the “‘even’ operators of the FW ‘“‘representation”
and not from the operators of the old ‘“‘representation”. One is thus
led to a new interpretation of the operators of non-relativistic
mechanics, notably of the position operator, an interpretation in
many ways more satisfying than the old one.

The rest of this section is devoted to the FW transformation and
te its application to the non-relativistic approximation of the Dirac
equation,

32. FW Transformation for a Free Particle

In the case of a free particle, the small and large components can
be completely decoupled in all orders of v/c.
We consider the Dirac Hamiltonian

Hy = a-p+pm.

Let I'y and I'_ be the projectors onto the positive and negative
energy solutions respectively:

1 H, 1 oa-p+ /3772] -
Ty == — | == —— (
= =3 [1 = 7, 5 l:l %+ 7, . (XX.195)
Ep = Vm24p2.

g

) L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78 (1958) 29.
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Denote by B; and B_ the projectors onto the spaces of the large
and small components respectively:

B, =41 £ B).

- By definition, the operator U, which takes us over to the FW
“representation’’, transforms [’y into B, and [ into B_. With
primes denoting the vectors and operators of the FW “‘representation”,
we therefore have:
UU=U00"'=1
' . =uor_vt=2B,.

We also require that U be invariant under translation, rotation
and reflection. It is left to the reader to show that U is then defined
to within a phase factor. Fixing this phase one obtains

1/ ,
o T a1 XX 199
] ‘m+Ep a-p '

= . XX.196
2By TP V2Ep(m + Ep) ( )

It will easily be verified that this expression has all the desired prop-
erties.

Since U is time-independent, the Hamiltonian Hyr which governs
the evolution of the states in the FW “‘representation’” is given by

the equation
Hy =UHpU?,

which gives, with the aid of (XX.196),
Hy =fE, = [(m2+p2)t. (XX.197)

Since Hry is an even operator, the large components @ and the small
components 3" are completely decoupled in the equation of motion:

b@’

f g =, ® (XX.198a)
.0y’ ,
137 =—Epy'. (XX.198b)

If we limit ourselves to positive energy solutions — a fortiors to non-
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relativistic energies — the Dirac theory is exactly equivalent to the
two-component. theory represented by equation (XX.198a) to all
orders in v/c.

The operator U commutes with p, J and the parity operator P,
pbut not with r. In a representation with r diagonal, it is an integral
operator with matrix element:

r|UJe = [ <rlp) dp <p
whence, with use of (XX.196'),

1+ B a-p ; »
Ulr'y = (27)3 D/"'”L 24+ B J ip-(rr')
r|Ulr = (2) 28, P ro ol dp

U

p') dp” {plr),

(r|Ur"y is a function of (r—r’) that practically vanishes for
|r—r'| > 1/m, but which takes non-negligible values when |r—r’| is
smaller or of the order of 1/m. The FW transformation is therefore
a nen-local transformation in which the spinor ¥’(r), the transform
of ¥(r), is obtained by taking a certain average over the values taken
by ¥ in a volume about r whose linear dimensions are of the order
of 1/m, the Compton wavelength of the particle.

The position of the particle is represented in the FW “representa-

tien” by the operator
r'=UrU".

This operator is different to r. Following Foldy and Wouthuysen,
we shall call the quantity represented by r in the FW ‘‘representation”
the average position. In the ordinary “representation’, it is represented
by a certain operator R and one has R’ = r, therefore:

R=U'rU.

In the Dirac representation, R is a non-local operator whose action
on the spinor ¥(r) consists, roughly, in multiplying by r and replacing
th? value at each point by a certain average over the values of the
Spiner in a domain of order 1/m about the point, whence the name
of average position given above.

If @ is an “even” operator of the FW “‘representation’, the cor-
responding observable Q@n.r. in the above-defined two-component
theory is obtained by keeping only the matrix elements of @’ between
Vectors of the space of the large components: Q,, = B.Q'B.. In
Particular, the observable r representing the position in the two-
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component theory corresponds to the ‘“‘average position” R and not
to the position operator of the Dirac theory proper 1).

33. FW Transformation for a Particle in a Field
In the presence of a field the Dirac Hamiltonian takes the form:

H = pm+ I +P
J =a-1m=0a-(p—-cA), P = eg.

In general, there exists no “‘representation’ in which the Hamiltonian
is exactly “even’ but by applying successive unitary transformations
one may obtain “‘representations” in which the respective Hamil-
tonians have an “odd” part of higher and higher order in v/c.

To see this, let us make the unitary transformation

U=exp (f.7/2m).

The Hamiltonian H; which governs the evolution of states in the
new representation is given by the equation

Hy = UHU' — iU dU" ot

By making use of the fact that p.# anticommutes with (fm--.#)
and that U'=exp (—p.#/2m), one obtains:

U(pm+7)U" = U(pm~+J)
= pm[cos (F]m)+(F|m) sin (F/m)]
+m[(F[m) cos (F|m)—sin (F|m)].

The terms U2 U' and iU 0U'/0t may be expanded into a power series

1) In accordance with the interpretation given here, the orbital angular
momentum r X p and the spin ¢ of the two-component theory do not cor-
respond to the orbital angular momentum and spin of the Dirac theory, but
to the “average angular momentum” R X p and the “‘average spin’” Z. Here
Z is the operator whose correspondent in the FW ‘“‘representation” is ¢;Z’ = o.
The reader may verify that each of the components of the average spin and
each of the components of the average angular momentum commutes with
the free particle Hamiltonian; the spin and the orbital angular momentum
proper do not have this property. Note also that:

] = (rxp)+io=(RXp)+32.
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in #/m by using the following operator identity, valid for any two
operators 4 and B (cf. Problem VIII.4):

. n brackets-..
eABe4A=B+[A,B]+< [A [4, B]]+.. —Fnl! [A [4,...[4,[A, B]] ]] -+

We shall only give the result of the calculation of H’ when .7 is

time-independent. Since we are concerned with a first approximation,
we put: H'=H;. One finds:

= pm + P+ A1

g2 1 [F[s P 1[5\
‘”fﬁ:yH%"sm[%[a% ]—gﬁ"”(a) -

([ Z]E)) -

The terms given in these expansions of the “even’ and ‘“odd” parts
of H; allow the determination of #; to within (.#/m)8 or (Z/m) (£ |m)4
whichever is the larger and the determination of .#; to within (.#/m)>
or (Z|m) (#|/m)® whichever is the larger. The “odd” part of H; is
therefore smaller than that of H by a factor of the order of the larger
of Z/m or (J|m)?; in the non-relativistic limit, Z/m and ./m are
of the order of (v/c)? and v/c respectively: .#; is therefore of the order
of (v/c)3.

We now effect upon H; the operation that we have effected upon
H; ie. we make a new unitary transformation with the operator

Uy = exp (B.51/2m),

and denote the new Hamiltonian by Hs. Its “odd” part .#5 is smaller
than that of H; by a factor of the order of 2;/m or (.#1/m)2, whichever
is the larger: in the non-relativistic limit, P/m is of the order of
(vfe)2, (7 (S1/m)? of the order of (v/c)s and .#5 is therefore of the order

of (v/c)5. If one neglects terms of this order, H is an “‘even” operator
given by the formula:

Hz&ﬂm-l—?]’z—{—O(vS)
:ﬂm-{—g”—l—ﬁ%j—lm[{, d ?]]——ﬁm<j> + O(vP)

8 m’|Lm’m

B feq+ 5 fla-m) — g [(0m), [(6-m), 9] — gog Ala- w4 O(09).
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Similarly, if one neglects terms of order (v/c)?, H; is the “even”
operator given by

1
2m

H, ~ fm +ep + f(o- )2 + O(v3).

We may now pass over to the two-component theory as in the case
of the free particle. To within (v/c)5, the positive energy solutions
are represented by the wave functions @' of the space of the large
components which obey the equation

. 0D . B ,
1_6t_ - (m Bl H'n.r.) @ >
where (m-+H,,) is the projection of the above approximate ex-

pression for Hys onto the space of the large components; i.e.

H,, = ep+ 5 (a-mP— o [(o-7), [(6-7), g1l — g g (0 )% (XX.199)

8m?
The first two terms are the Hamiltonain H,, of Pauli theory. The
last two terms are relativistic corrections of order (v/c)? to the non-
relativistic energy Hy.r..

A simple calculation gives

(6-m)t = (n2—e(a-H))2 (XX.200)
[(6-7), [(6-7), ¢]] = div &§+26- (& X ), (XX.201)

which allows H,, to be put in a more familiar form.

By successive application of a sufficient number of these unitary
transformations, one may thus construct a two-component theory
giving the positive energy states to any desired order in v/c. Kach
new transformation reduces the error by a factor of (v/c)2. The study
of the convergence of the series is rather delicate; it is very likely
that it is an asymptotic expansion in most cases. Roughly speaking,
it is a power series expansion in the operators p/m, that is (#/mc)
grad [and in O/mot, that is, (%/mc2)0/ot]. The rate of convergence
of the series therefore depends on the smallness of the variation of
the potential (A, ¢) over a distance of the order of 7/mc [and over a
time interval of the order of 7/mc?, the interval necessary to travel
one Compton wave length at the velocity of light].
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34, Electron in a Central Electrostatic Potential

As an application of the technique described in the preceding
paragraph, consider an electron in a central electrostatic potential
V(r) = ep(r). In this case, A(r)=0 and the Hamiltonian of the Pauli
theory is just the Hamiltonian of the ordinary Schrédinger theory:

7
n.r. = o + V().

If one wishes to continue the calculations to the order immediately
above v2/c?, one must replace Hy,, by H,,. This amounts to adding
the last two terms of (XX.199) to Hy,.,. In the present case

rdV
e = —grade—;—a?
edivd =— AV
which gives, taking into account relation (XX.200) and (XX.201),
;o pt 2 1dV h2
Hyp = oy = 8m3c2 | dm2c2 r dr (e-b) + Bmc O Vau (R2202)

The first correction term, —p4/8m3¢?, is the relativistic correction
te the kinetic energy p2/2m. The second is a spin-orbit coupling term
[ef. formula (XIII.95)]. The third term, %2 A V/8m2¢2, is a correction

to the central potential known as the Darwin term; if V(r)= —Ze?/r
(pure Coulomb potential), the Darwin term is equal to
(mZe?h2[2m2c2) 6(r)

and affects only the s-states.

35. Discussions and Conclusions

In the presence, as in the absence, of a field, the operators of the
two component non-relativistic theory are the projections of operators
of the FW “representation” on the space of the large components.
.In Particular, the operator r of the non-relativistic theory can be
identified with what we have called the “average position” R. In
the Dirac theory, the interaction of the particle with the electro-
?ﬂ&gnetic potential is a local interaction, in other words the particle
Interacts with the electromagnetic potential at its position r. When
We pass to the “FW representation”, where r represents the “average
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position”, this interaction is transformed into a non-local interaction
which has contributions from the values taken by the electromagnetic
potential in a domain about the particle of approximate dimensions
fi/me; if the potential (A, ¢) varies little in this domain, this inter-
action can be represented by a Taylor expansion involving the value
of the potential and its successive derivatives at the point r. A Hamil-
tonian such as H;, [eqs. (XX.199) or (XX.202)] contains the first
terms of this expansion.

Thus in the non-relativistic limit, the Dirac electron appears not
as a point charge, but as a distribution of charge and current ex-
tending over a domain of linear dimensions 7/mc. This explains the
appearance of interaction terms characteristic of the presence of a
magnetic moment (interaction — w-3#, spin-orbit interaction) and of
an extended charge distribution (Darwin term).

Finally, we note that the application of the non-relativistic approx-
imation to potentials that are singular at the origin such as
A= MXr|r} or g = —Ze[r is not rigorously justified since in the neigh-
borhood of the point =0 the quantities eA/m and ep/m cease to
be small. If the method of successive approximations described in
this section was continued sufficiently far, terms sufficiently singular
in the origin to give an infinite contribution to the energy would
make their appearance in the non-relativistic Hamiltonian. The
solution to this difficulty is suggested by the preceding discussion.
In the non-relativistic Hamiltonian, A and ¢ are replaced by a certain
average of these quantities over a domain of linear dimensions of
the order of 7/mec. If the non-relativistic approximation is really
justified, this amounts to effecting a cut-off of the singularity at a
distance 7/mc from the origin in all the singular expressions en-
countered in the calculation. In order for the non-relativistic approx-
imation to be applicable to the two cases mentioned above, it suffices
that 1):

e|A| < me2, ep < mc?

at the point r=7/mec.

1) If my is the mass of the atomic nucleus |M| ~ Zefi/myc; the quantity
eA[mc3 is of the order of (e2/fic)(Zm/mxy) at the point » = #i/me, i.e. 105 to 10-6;
our calculation of the hyperfine coupling is therefore entirely justified. With
regard to the example of § 34, the quantity ep/mc? being of the order of Ze2/fic,
the calculation is valid if Z < 137.
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VI. NEGATIVE ENERGY SOLUTIONS AND
POSITRON THEORY

Oalaoon! Oxlxcox! (Anabasis, IV.8).
36. Properties of Charge Conjugate Solutions

The concept of charge conjugation defined in § 19 will be useful
to us in the following discussion. Charge conjugation is an antilinear
and reciprocal correspondence between wave functions representing
the evolution of two different particles in the same electromagnetic
potential (A, ¢): these particles have the same mass m but opposite
charges +e and —e.

If a physical quantity associated with the first particle is represented
by @(e) the same quantity associated with the second particle is
represented by @(—e). Thus the momentum is represented in both
cases by p = —1il/, and the energy is represented by

H(e) = a-(p—eA)+pm-+tep
in the one case and by

H(—e) = a-(p-+eA)-+pm—eg
in the other.

Consider a solution ¥(r,t) and the charge-conjugate solution
YC(r,t). We wish to compare the physical properties of the states
represented by these solutions. One knows that

Yo — Ko, (XX.203)

where K¢ is the antilinear operator defined by equation (XX.124).
The notation (@) will be used to denote the average value of ¢ in
the state ¥ and the notation (Q)¢ to denote the average value of
the same operator in the state ¥¢. ¥ and ¥¢ being supposed nor-
malized to unity, we have

Q> =<P|Q¥>
{@>c=PClQ|PC).
From relation (XX.203),
(@>c=(P|Kc)QKc|Y))
=(P|(K'QKo)|P)* =P|(Kc'Q'Kc)|¥)

from which we obtain the relation between average values

(@>c=<(Kc'@'Kc)). (XX.204)
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By applying this relation and making use of the properties of the
antiunitary transformation K¢, one finds the following relations
between average values in the state ¥ and in the charge conjugate
state:

(Bre=—<B> {ayo={a) (6>c=—{a>
{rye=<r) {pre=—<{p) (Lye=—(L>  (XX.205)
(P(ro)yc={<{P(ro)) {j(ro)>e=<j(ro)> o= —>
CH(—e))c=—<H(e)).

It is seen that the two charge-conjugate solutions have the same
probability density and the same current density at all points — thus
opposite charge densities and electric-current densities — but opposite
energies: charge conjugation changes the sign of the energy.

37. Abnormal Behavior of the Negative Energy Solutions

After these preliminaries, we are in a position to discuss the question
of negative energies in detail.

We first consider the free particle case. The solutions of the Dirac
equation were given in § 23. The energy spectrum is made up of two
continuous bands (—oo, —mc?) and (mc?, +o0) separated by an
interval of 2mc? (Fig. XX.2a). The first of these bands corresponds
to negative energy states: K= —E,= —)/m2+p2, and the second to
positive energy states.

We propose to study the motion of a packet of free waves. It will
be shown that in general it is only in the average that the center of
the packet follows the classical trajectory. To this effect, we integrate
the equations of motion in the Heisenberg ‘‘representation’” which
in this case are:

dr

= ilH, r]l=a (XX.206)
da . b7t i H) — 2iaH
-(g——l[ yo] =1(Ha + aH) — 2ia (XX.207)

= 2ip — 2iaH,

p and H being constant in time, equation (XX.207) is easily integrated
to give

a(t) = <a(0) - %) e-21HE | %.
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The dependence of dr/d¢ on ¢ being thus explicitly given, equation
(XX.206) can easily be integrated to give:

e—2iHt

r(t) = ’(0)+%t+i<a(0) —I—’D ST (XX.208)

Equation (XX.208) gives the operator r of the Heisenberg ‘‘representa-
tion”’ at time ¢ as a function of the values taken by the operators
r and o at the initial time ¢{=0. From it we can obtain the law of
motion of the center (r) of any wave packet, which it will be in-
structive to compare with the classical law:

ra(t) = ra(0) + (%)cl t

Instead of the classical uniform rectilinear motion, the free wave
packet follows a complicated motion resulting from the addition of
a uniform rectilinear motion of velocity (p/H) and a rapidly oscil-

latory motion,
_ e—21HL\_
CCUR IR
whose amplitude and period are of the order of 7i/2mc and 7i/2mc?
respectively. This oscillatory motion is called ‘“Zitterbewegung”.
The “Zitterbewegung” term vanishes if the packet is a superposition

of only positive or only negative energy waves. To see this it suffices

to show that
e—2iHt

p o
I’i(“‘ﬁ)‘ﬁr—ﬂ—o’

where 1", and I'_ are the projectors onto the states of positive and
negative energies respectively [definition (XX.195)]. One finds

Successively
[H, o] = 2p — 2aH

P H
[F:l:,a]—:tqu:aEp,

and since HI', = + E,I',, it can be deduced that

OE]}[]},a]I’i=I}<%—a>I},

from which we obtain the enunciated property by using the fact
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that H commutes with I, and I"_. “The Zitterbewegung”’ is therefore
caused by interference between the positive and negative energy
components of the wave packet.

The “Zitterbewegung” is a curious effect related to negative energies
but does not, in itself, constitute a difficulty. The difficulty appears
when one studies the motion of a wave packet formed exclusively
of negative energy states. In this case, the “Zitterbewegung” dis-
appears; the center of the packet describes a uniform rectilinear motion

of velocity:
v PN PN
\\.H// \Ep/

in the opposite direction to its momentum (p>. In particular, in a
non-relativistic limit (H ~ —mc2), one has the relation v — —{p>[m,
i.e. the particle behaves as if it had a negative mass —m.

This type of difficulty is even more apparent when one studies the
motion of wave packets in a static field.

o

+mc®*— — T

N\
N

2_

e __%____%____Zm

a

Fig. XX.2. Energy spectrum of a Dirac electron: (a) free; (b) in the attractive
potential — Ze?/r; (c) in the repulsive potential Ze?/r.

Consider, for example, an electron in the attractive Coulomb
potential —Ze?/r. The spectrum (cf. Fig. XX.2b) is made up of a
continuous positive energy band from mc? to oo, a series of positive
energy levels smaller than mc? and a continuous negative energy band
from —mc? to —oo. To picture the negative energy states, recall
that they correspond by charge conjugation to the states of a particle
of the same mass and of opposite charge (that is, a positron) in the
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same potential or, what amounts to the same, to the states of an elec-
tron in the repulsive potential Ze?/r. In this correspondence the energy
changes sign and the small and large components are interchanged,
but the densities and the current densities remain the same [cf. eq.
(XX.205)]. The spectrum of the electron in the repulsive potential
Ze?|r is shown in Figure XX.2¢. The positive energy continuum in
the repulsive potential corresponds to the negative energy continuum
in the attractive potential.

Let us consider the motion of a packet of negative energy waves
in the potential —Ze?/r, assuming that the non-relativistic approxima-
tion is valid (Ze? << 1, energies near —imc?); the motion is the same
as that of the packet of positive energy waves that corresponds by
charge conjugation. In particular, in the limit of very small velocities,
the classical approximation may be applied (cf. § VI.5) and the motion
at the center of the packet is essentially that of a classical electron
in the potential with the opposite sign, that is, of a particle of negative
mass —m in the potential —Ze?/r: the velocity points in the opposite
direction to the momentum, the acceleration in the opposite direction
to the force. Such a situation has never been observed experimentally.

38. Reinterpretation of the Negative Energy States. Theory of ‘“Holes”
and Positrons

As they stand, the negative energy solutions have no physical
significance. If it were possible to completely decouple the positive
and negative energy states the latter could simply be ignored. Such,
however, is not the case.

Consider, for example, a free electron in a positive energy state
E ., and subject it during a time interval (0, ¢) to a radio-frequency
field of frequency w. If ¢ is sufficiently long and the intensity of the
field not too strong, the resulting effect can be calculated by the
method of § XVIIL.6; one finds a non-vanishing probability for the
electron to make a transition to a state of energy K.+fiw or £, —fo.

In particular if
hiw > KB+ mce2,

the second transition is made to a state of negative energy.

As another example, consider the complete spectrum of the hydrogen
atom (Fig. XX.2b). Owing to the coupling of the electron with the
electromagnetic field, there is always a certain probability of a radiative
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transition from a given state of the atom to a state of lower energy.
Consequently an electron in one of the bound states of the hydrogen
atom can, even if isolated, make quantum jumps to states of negative
energy with emission of one or several photons; further, since the
spectrum has no lower bound, the hydrogen atom has no stable state 1).

In order to avoid these difficulties Dirac has made the following
suggestion. In what one calls the ““vacuum”, all of the states of negative
energy are occupied by an electron. If an electron is added to this
“vacuum”, it will necessarily be in a positive energy state since all
of the negative energy states are occupied and electrons obey Fermi-
Dirac statistics.

The “vacuum’ therefore appears as a completely degenerate Fermi
gas of infinite density. In addition, it is supposed that it is completely
unobservable, giving rise to no gravitational or electromagnetic
effects. The observable physical properties of a given state will be
the deviations of that state from this “vacuum”. Thus the observable
charge of the system (electron-f‘‘vacuum”) is the difference between
the total charge of the system and the charge of the “‘vacuum”, i.e.
the charge of the electron. Similarly the observable energy of this
system is the difference between its total energy and the energy of
the “vacuum”, and is therefore the energy of the electron. Up to
the present, therefore, the only effect of redefining the vacuum in
this way, and reinterpreting measurable quantities accordingly, is
to forbid transitions to the negative energies, owing to the exclusion
principle 2).

Let us now consider what will be observed when an electron of the
negative energy ‘‘sea’ is missing. Applying the above convention
concerning observable physical properties, we can conclude that this
“hole” will have a charge opposite to that of the missing electron.
It will also have an energy of opposite sign, that is a positive energy,
and a momentum in the opposite direction. These considerations are
valid whether or not the missing electron is in an eigenstate of the
Hamiltonian. If, in particular, the missing electron forms a wave
packet moving with velocity v, the ‘“hole” moves with the same

1) O. Klein has formulated a celebrated paradox which exhibits in another
way the existence of a mnon-vanishing probability of transition to negative
energy states. Klein’s paradox is expounded in many treatises, for example,
in M. Born, loc. cit., note 1, p. 4, Vol. 1.

2) In particular, the Zitterbewegung effect is automatically eliminated.
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velocity but opposite momentum: the “hole” therefore acts like a
particle of positive mass +m and charge —e. Such particles have
been observed in nature: they are called positrons.

Under the action of an electromagnetic field or any other suitable
perturbation, an electron from the negative energy “‘sea’ can make
a transition to a state of positive energy. The ‘“hole” of negative
energy appears as a positron. In such a transformation, a pair of
particles of opposite sign is thus formed. The creation of positron-
electron pairs has been observed experimentally.

Similarly, if there is a “hole” in the negative energy ‘“sea’”, an
electron in a positive energy state can make a transition to this un-
occupied negative energy state with emission of photons. This phenom-
enon of annihilation of an electron-positron pair with emission of
photons has also been observed experimentally.

39. Difficulties with the “Hole”” Theory

The ‘“hole” theory which was briefly outlined above, permits the
reconciliation of the Dirac theory with the experimental facts: non-
existence of negative energy states, existence of positrons, creation
and annihilation of pairs. It therefore constitutes a considerable step
forward. However, it has a number of limitations and difficulties.

First of all, it is incomplete. By postulating the occupation of the
quasi-totality of negative energy states, the theory ceases to be a one-
particle theory, even when it sets out to describe a single electron.
The formalism of the Dirac theory of a single particle, as set forth
in this chapter, is therefore insufficient for describing such a situation,
and it is only in the framework of Field Theory that one can hope
to obtain a self-consistent description.

The hole theory is only a first step in the direction of a correct
theory of the quantized electron field. It has the merit of providing
simple pictures and can therefore serve as a guide in the elaboration
of the correct theory. But pitfalls and contradictions appear when
it is pushed too far.

For example, having defined the ‘‘vacuum” as composed of an
infinite number of electrons, it is inconsistent to assume that these
electrons do not interact.

Another weak point of the theory is the apparently very unsym-
metrical role played by the electrons and the positrons. One can also
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construct a corresponding charge-conjugate theory where the positrons
play the role of the particles and the electrons that of the holes
without any of the physical consequences being changed. All of these
difficulties can be avoided in the Field Theory formalism by starting
from equations invariant with respect to charge conjugation.

Finally, we note that even the definition of the negative energy
states depends on the applied electromagnetic potential. In the two
cases considered in § 37, namely the free particle and the particle
in a Coulomb field, the space of the negative energy states is not the
same. If, for example, the ground-state wave function for the hydrogen
atom is expanded in a series of plane waves, one finds a weak but
non-vanishing contribution from plane waves of negative energy.
In the above definition of the ““‘vacuum”, the states of negative energy
considered are those of the free particle; indeed it is natural to define
the vacuum in the absence of a field. The introduction of an external
electromagnetic field modifies this state of the “vacuum’ (pair crea-
tion), the latter acting like a polarizable medium, in such a way that
an electric charge in the ““vacuum” seems smaller than it really is.
Such effects are also found in field theory. Hole theory predicts these
effects but gives no reliable and self-consistent method for their
calculation.

Note Added in Proof (cf. p. 913).

To be entirely correct, one should state the parity question as follows.
To the transformation s of the orthochronous Lorentz group, there correspond
two transformations, s’ and s”, of the group G of Lorentz transformation
operators. These are respectively represented by the fwo parity operators
P’ and P” given by P'=c"y0P® and P”=c¢"y°P0), with ¢’=—c¢”. The set
(¢', ¢”) defines the intrinsic parity of the particle. According to the discussion
of §13, there are two possible intrinsic parities, (41, —1) and (—1, +1).
They correspond to two inequivalent irreducible representations of the group
G(®). Since we are dealing here with a single particle, this notion of intrinsic
parity is academic. However, it is relevant in Quantum Field Theory when
the interaction between several different particles is considered.

A similar treatment applies if G®) instead of G(@ is chosen as the group
of Lorentz transformation operators (cf. notes, p. 904 and p. 908). One
again finds two possible values of the intrinsic parity, namely (47, —1)
and (—1, +17).

It should be noted that, contrary to what is often stated in the literature,
the number of possible intrinsic parities for spinors is not four but two.
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EXERCISES AND PROBLEMS

1. Show that if ¥ satisfies the Klein—-Gordon equation with a field A4#,
the equation of continuity is satisfied by the four-current:

i I — 1 L * € L
= 5771[!17’*(Dﬁ ¥) —V(D*F)* ] = o [F*(0"F) — P (o"¥™)] — AP
(cf. Problem IV.1):

2. Consider a hydrogen atom in which the electron is replaced by a particle
of the same mass and the same charge obeying the Klein—Gordon equation.
The levels E of the discrete spectrum are then given by the eigenvalue equation :

50200

Show that this equation can be solved exactly by separating the angular and
radial variables, and that the levels of the discrete spectrum depend on the
quantum numbers 7 and ! according to the formula:

1
el T2
E’”=m<l ——-—> e=14+1—[(l+ 12— et}
+(n—81)2 l +2— [ + 3) ]
[n=1,2,...,00; l=0,1,...,n—1].
Compare this spectrum with that given by the non-relativistic Schrédinger
theory.

3. Show that all of the (not necessarily unitary) ¢4 matrices defined in
Table 1 (§ 10), have a determinant equal to 1.

4. If Bisthe matrix defined at the end of §10, show that BB* — B*B — — J.
[Show first that

(¢) BB* is a multiple of the unit element, and therefore that BB* —
= B*B — 4 I;
(74) the matrix BB* is the same whatever the system of 4 unitary matrices

¥ used to define B.]

5. Prove the following properties of the (antiunitary) charge conjugation
operator K¢ defined in § 19

ch”KCTZ—])“, ]{(:u],,quKclr ————Jaﬂ
KcPKet =— P, KcKpKe'=— Krp.

From these, deduce that with the choice made for the phase of the trans-
formation operators in § 17, K¢ commutes with the operators of translation
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and of the proper Lorentz transformations and that it anticommutes with the
spatial reflections and time reversal. How must the choice of phases be modified
in order to have K¢ commute with all of these transformations.

6. From the Dirac Hamiltonian deduce the equation of motion (XX.147)
and (XX.148) for the operators r and 7 in the Heisenberg representation.
Similarly deduce the equations

d 1 dm
T (r><1t)+§c:|=r><F, —dt—za-FEea-é",
where F is the ‘“Lorentz force”: F = e(& + a x H); compare these with
equations (XX.22) and (XX.21’) from classical dynamics.

7. In the absence of a field, any solution of the Dirac equation is a solution
of the Klein-Gordon equation. Show by giving a counter example that the
converse is not true.

8. Prove identities (XX.169).

9. Expand a Dirac plane wave of momentum p directed along the z axis
into free spherical waves.

10. Make a systematic search for the wave functions of the hydrogen atom
such that the radial functions ¥ and G' are multiples of each other. Verify that
the levels found correspond to n” = 0 (therefore J =n — §) and I = n — 1.
One finds (notations of § 27):

1\4
E,n'n_% = m<l s e—)

F =Cst. X pse~e, G=—vF
with

s=Vn2—et, x=men, p=ur, v=ux/(E+m)~ e2n.

11. Following the method described in § 27, calculate the levels of the
hydrogen atom predicted by the Dirac theory.

12.  Compare the fine structure of the levels of the hydrogen atom as given
by the Dirac theory and as given by the Klein-Gordon theory of a particle
of the same mass and same charge in the same Coulomb field (cf. Problem XX.2).

13.  Calculate the relativistic corrections of order v?/c? given by expression
(XX.202) for the levels 2s, , 2py, and 2p,, of the hydrogen atom. Verify that
in this approximation the states 2s, and 2p,, remain at the same level and
compare the results with those given by the exact treatment of § 27.



